These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 38732452)

  • 1. Creating Climate-Resilient Crops by Increasing Drought, Heat, and Salt Tolerance.
    Sugumar T; Shen G; Smith J; Zhang H
    Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production.
    Fita A; Rodríguez-Burruezo A; Boscaiu M; Prohens J; Vicente O
    Front Plant Sci; 2015; 6():978. PubMed ID: 26617620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant breeding for harmony between sustainable agriculture, the environment, and global food security: an era of genomics-assisted breeding.
    Hafeez A; Ali B; Javed MA; Saleem A; Fatima M; Fathi A; Afridi MS; Aydin V; Oral MA; Soudy FA
    Planta; 2023 Oct; 258(5):97. PubMed ID: 37823963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic manipulation for abiotic stress resistance traits in crops.
    Esmaeili N; Shen G; Zhang H
    Front Plant Sci; 2022; 13():1011985. PubMed ID: 36212298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate-resilient crops: Lessons from xerophytes.
    Chen X; Zhao C; Yun P; Yu M; Zhou M; Chen ZH; Shabala S
    Plant J; 2024 Mar; 117(6):1815-1835. PubMed ID: 37967090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops.
    Sánchez-Bermúdez M; Del Pozo JC; Pernas M
    Front Plant Sci; 2022; 13():918537. PubMed ID: 35845642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
    KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA
    Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview.
    Trono D; Pecchioni N
    Plants (Basel); 2022 Dec; 11(23):. PubMed ID: 36501397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario - A Current Overview.
    Dahal K; Li XQ; Tai H; Creelman A; Bizimungu B
    Front Plant Sci; 2019; 10():563. PubMed ID: 31139199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of Halophytes as Sustainable Fodder Production by Using Saline Resources: A Review of Current Knowledge and Future Directions.
    Hasnain M; Abideen Z; Ali F; Hasanuzzaman M; El-Keblawy A
    Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving abiotic stress tolerance of forage grasses - prospects of using genome editing.
    Sustek-Sánchez F; Rognli OA; Rostoks N; Sõmera M; Jaškūnė K; Kovi MR; Statkevičiūtė G; Sarmiento C
    Front Plant Sci; 2023; 14():1127532. PubMed ID: 36824201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing climate-resilient crops: improving plant tolerance to stress combination.
    Rivero RM; Mittler R; Blumwald E; Zandalinas SI
    Plant J; 2022 Jan; 109(2):373-389. PubMed ID: 34482588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea.
    Martin RC; Glover-Cutter K; Baldwin JC; Dombrowski JE
    BMC Res Notes; 2012 Jan; 5():66. PubMed ID: 22272737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Physio-Biochemical and Metabolic Responses of Peanut (
    Patel J; Khandwal D; Choudhary B; Ardeshana D; Jha RK; Tanna B; Yadav S; Mishra A; Varshney RK; Siddique KHM
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive Genomic Approaches to Explore Drought- and Salt-Induced Oxidative Stress Responses in Plants under Changing Climate.
    Billah M; Aktar S; Brestic M; Zivcak M; Khaldun ABM; Uddin MS; Bagum SA; Yang X; Skalicky M; Mehari TG; Maitra S; Hossain A
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.