These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 3873255)
1. Mechanism of inhibition of the PC1 beta-lactamase of Staphylococcus aureus by cephalosporins: importance of the 3'-leaving group. Faraci WS; Pratt RF Biochemistry; 1985 Feb; 24(4):903-10. PubMed ID: 3873255 [TBL] [Abstract][Full Text] [Related]
2. Nucleophilic re-activation of the PC1 beta-lactamase of Staphylococcus aureus and of the DD-peptidase of Streptomyces R61 after their inactivation by cephalosporins and cephamycins. Faraci WS; Pratt RF Biochem J; 1987 Sep; 246(3):651-8. PubMed ID: 3500712 [TBL] [Abstract][Full Text] [Related]
3. Pre-steady state beta-lactamase kinetics. Observation of a covalent intermediate during turnover of a fluorescent cephalosporin by the beta-lactamase of STaphylococcus aureus PC1. Anderson EG; Pratt RF J Biol Chem; 1981 Nov; 256(22):11401-4. PubMed ID: 6975275 [TBL] [Abstract][Full Text] [Related]
4. Simple assay of beta-lactamase with agar medium containing a chromogenic cephalosporin, pyridinium-2-azo-p-dimethylaniline chromophore (PADAC). Kobayashi S; Arai S; Hayashi S; Sakaguchi T Antimicrob Agents Chemother; 1988 Jul; 32(7):1040-5. PubMed ID: 3263833 [TBL] [Abstract][Full Text] [Related]
5. In vitro evaluation of pyridine-2-azo-p-dimethylaniline cephalosporin, a new diagnostic chromogenic reagent, and comparison with nitrocefin, cephacetrile, and other beta-lactam compounds. Jones RN; Wilson HW; Novick WJ J Clin Microbiol; 1982 Apr; 15(4):677-83. PubMed ID: 6978350 [TBL] [Abstract][Full Text] [Related]
6. Substrate inhibition of beta-lactamases, a method for predicting enzymatic stability of cephalosporins. Mahoney DF; Koppel GA; Turner JR Antimicrob Agents Chemother; 1976 Sep; 10(3):470-5. PubMed ID: 984790 [TBL] [Abstract][Full Text] [Related]
7. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
8. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine. Chen CC; Herzberg O Biochemistry; 2001 Feb; 40(8):2351-8. PubMed ID: 11327855 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics. Kumar S; Adediran SA; Nukaga M; Pratt RF Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604 [TBL] [Abstract][Full Text] [Related]
10. Kinetics and mechanism of the serine beta-lactamase catalyzed hydrolysis of depsipeptides. Govardhan CP; Pratt RF Biochemistry; 1987 Jun; 26(12):3385-95. PubMed ID: 3115289 [TBL] [Abstract][Full Text] [Related]
11. Effect of the 3'-leaving group on turnover of cephem antibiotics by a class C beta-lactamase. Mazzella LJ; Pratt RF Biochem J; 1989 Apr; 259(1):255-60. PubMed ID: 2785791 [TBL] [Abstract][Full Text] [Related]
12. The synthesis and evaluation of 2-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Buynak JD; Doppalapudi VR; Rao AS; Nidamarthy SD; Adam G Bioorg Med Chem Lett; 2000 May; 10(9):847-51. PubMed ID: 10853645 [TBL] [Abstract][Full Text] [Related]
13. An engineered Staphylococcus aureus PC1 beta-lactamase that hydrolyses third-generation cephalosporins. Zawadzke LE; Smith TJ; Herzberg O Protein Eng; 1995 Dec; 8(12):1275-85. PubMed ID: 8869640 [TBL] [Abstract][Full Text] [Related]
14. Probing the non-proline cis peptide bond in beta-lactamase from Staphylococcus aureus PC1 by the replacement Asn136 --> Ala. Banerjee S; Shigematsu N; Pannell LK; Ruvinov S; Orban J; Schwarz F; Herzberg O Biochemistry; 1997 Sep; 36(36):10857-66. PubMed ID: 9283075 [TBL] [Abstract][Full Text] [Related]
15. Cryoenzymology of staphylococcal beta-lactamase: trapping a serine-70-linked acyl-enzyme. Virden R; Tan AK; Fink AL Biochemistry; 1990 Jan; 29(1):145-53. PubMed ID: 2108714 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of inhibition of RTEM-2 beta-lactamase by cephamycins: relative importance of the 7 alpha-methoxy group and the 3' leaving group. Faraci WS; Pratt RF Biochemistry; 1986 May; 25(10):2934-41. PubMed ID: 3487346 [TBL] [Abstract][Full Text] [Related]
17. The synthesis and evaluation of 3-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Buynak JD; Doppalapudi VR; Adam G Bioorg Med Chem Lett; 2000 May; 10(9):853-7. PubMed ID: 10853646 [TBL] [Abstract][Full Text] [Related]
18. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158 [TBL] [Abstract][Full Text] [Related]
19. Pyridinium 2-azo-p-dimethylaniline chromophore, a chromogenic reagent for beta-lactamase testing compared to nitrocefin. Barlam T; Neu HC Eur J Clin Microbiol; 1984 Jun; 3(3):185-9. PubMed ID: 6332017 [TBL] [Abstract][Full Text] [Related]
20. Importance of beta-lactamase inactivation in treatment of experimental endocarditis caused by Staphylococcus aureus. Goldman PL; Petersdorf RG J Infect Dis; 1980 Mar; 141(3):331-7. PubMed ID: 6965978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]