These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38732653)
21. A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: Synthesis and characterization. Tarchoun AF; Trache D; Klapötke TM; Krumm B; Khimeche K; Mezroua A Carbohydr Polym; 2020 Dec; 249():116820. PubMed ID: 32933667 [TBL] [Abstract][Full Text] [Related]
22. Transparent Poly(methyl methacrylate) Composites Based on Bacterial Cellulose Nanofiber Networks with Improved Fracture Resistance and Impact Strength. Santmarti A; Teh JW; Lee KY ACS Omega; 2019 Jun; 4(6):9896-9903. PubMed ID: 31460080 [TBL] [Abstract][Full Text] [Related]
23. Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites. Quero F; Nogi M; Yano H; Abdulsalami K; Holmes SM; Sakakini BH; Eichhorn SJ ACS Appl Mater Interfaces; 2010 Jan; 2(1):321-30. PubMed ID: 20356252 [TBL] [Abstract][Full Text] [Related]
24. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Fu L; Zhang J; Yang G Carbohydr Polym; 2013 Feb; 92(2):1432-42. PubMed ID: 23399174 [TBL] [Abstract][Full Text] [Related]
25. Process-structure-property relationships of cellulose nanocrystals derived from Juncus effusus stems on ҡ-carrageenan-based bio-nanocomposite films. Kassab Z; Daoudi H; Salim MH; El Idrissi El Hassani C; Abdellaoui Y; El Achaby M Int J Biol Macromol; 2024 Apr; 265(Pt 2):130892. PubMed ID: 38513904 [TBL] [Abstract][Full Text] [Related]
26. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis. Guzun AS; Stroescu M; Jinga SI; Voicu G; Grumezescu AM; Holban AM Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():280-8. PubMed ID: 25063120 [TBL] [Abstract][Full Text] [Related]
27. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Ul-Islam M; Khan T; Park JK Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931 [TBL] [Abstract][Full Text] [Related]
28. Impact of Metal Salt Oxidants and Preparation Technology on Efficacy of Bacterial Cellulose/Polypyrrole Flexible Conductive Fiber Membranes. Tao S; Yang Q; Qiu H; Zhu J; Zhou W; Su J; Zhang N; Xu L; Pan H; Zhang H; Wang J Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541435 [TBL] [Abstract][Full Text] [Related]
29. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Zhou L; He H; Li MC; Song K; Cheng HN; Wu Q Carbohydr Polym; 2016 Nov; 153():445-454. PubMed ID: 27561516 [TBL] [Abstract][Full Text] [Related]
30. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Lee KY; Buldum G; Mantalaris A; Bismarck A Macromol Biosci; 2014 Jan; 14(1):10-32. PubMed ID: 23897676 [TBL] [Abstract][Full Text] [Related]
31. Bacterial Cellulose Electrospun Fiber Mesh Coated with Chitin Nanofibrils for Eardrum Repair. Azimi B; Rasti A; Fusco A; Macchi T; Ricci C; Hosseinifard MA; Guazzelli L; Donnarumma G; Bagherzadeh R; Latifi M; Roy I; Danti S; Lazzeri A Tissue Eng Part A; 2024 Apr; 30(7-8):340-356. PubMed ID: 37962275 [TBL] [Abstract][Full Text] [Related]
32. Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Horue M; Silva JM; Berti IR; Brandão LR; Barud HDS; Castro GR Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839745 [TBL] [Abstract][Full Text] [Related]
33. A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Martins D; Estevinho B; Rocha F; Dourado F; Gama M Carbohydr Polym; 2020 Feb; 230():115657. PubMed ID: 31887925 [TBL] [Abstract][Full Text] [Related]
34. Potential Applications of Bacterial Cellulose in Environmental and Pharmaceutical Sectors. Ul-Islam M; Ul-Islam S; Yasir S; Fatima A; Ahmed MW; Lee YS; Manan S; Ullah MW Curr Pharm Des; 2020; 26(45):5793-5806. PubMed ID: 33032504 [TBL] [Abstract][Full Text] [Related]
35. Development and Characterization of New Energetic Composites Based on HNTO/AN Co-Crystal and Nitro-Cellulosic Materials. Boukeciat H; Tarchoun AF; Trache D; Abdelaziz A; Meziani R; Klapötke TM Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050413 [TBL] [Abstract][Full Text] [Related]
36. Zeolitic imidazolate framework-8/bacterial cellulose composites for iodine loading and their antibacterial performance. Du L; Zhang T; Li P; Chen W; Wu C Dalton Trans; 2022 Sep; 51(37):14317-14322. PubMed ID: 36069316 [TBL] [Abstract][Full Text] [Related]
37. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Yang G; Xie J; Hong F; Cao Z; Yang X Carbohydr Polym; 2012 Jan; 87(1):839-845. PubMed ID: 34663043 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Li Y; Qing S; Zhou J; Yang G Carbohydr Polym; 2014 Mar; 103():496-501. PubMed ID: 24528759 [TBL] [Abstract][Full Text] [Related]
39. Micro- and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials. Kassab Z; Abdellaoui Y; Salim MH; Bouhfid R; Qaiss AEK; El Achaby M Carbohydr Polym; 2020 Oct; 245():116506. PubMed ID: 32718617 [TBL] [Abstract][Full Text] [Related]
40. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Mbituyimana B; Liu L; Ye W; Ode Boni BO; Zhang K; Chen J; Thomas S; Vasilievich RV; Shi Z; Yang G Carbohydr Polym; 2021 Dec; 273():118565. PubMed ID: 34560976 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]