These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38732668)

  • 1. Compressive Mechanical Behavior and Corresponding Failure Mechanism of Polymethacrylimide Foam Induced by Thermo-Mechanical Coupling.
    Xing Z; Cen Q; Wang Q; Li L; Wang Z; Liu L
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement by Metallic Tube Filling of the Mechanical Properties of Electromagnetic Wave Absorbent Polymethacrylimide Foam.
    Yan L; Jiang W; Zhang C; Zhang Y; He Z; Zhu K; Chen N; Zhang W; Han B; Zheng X
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Absorbent Foam Filling on Mechanical Behaviors of 3D-Printed Honeycombs.
    Yan L; Zhu K; Zhang Y; Zhang C; Zheng X
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32927697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Impact Behavior of Carbon Fiber/Polymethacrylimide (PMI) Foam Sandwich Composites for Personal Protective Equipment.
    Zhang X; Tian M; Li J; Chen X
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Experimental Study of PMI Foam Composite Properties in Terahertz].
    Xing LY; Cui HL; Shi CC; Han XH; Zhang ZY; Li W; Ma YT; Zheng Y; Zhang SN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3319-24. PubMed ID: 26964202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Responses of Sandwich Beams with Polymethacrylimide (PMI) Foam Cores When Subjected to Impact Loading.
    Mahgoub M; Zhang Y; Yang C; Tan Z
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Dynamic Mechanical Properties of Sandwich Beam with Stepwise Gradient Polymethacrylimide (PMI) Foam Core under Low-Velocity Impact.
    Mahgoub M; Liu C; Tan Z
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression-Softening Bond Model for Non-Water Reactive Foaming Polyurethane Grouting Material.
    Dong B; Du M; Fang H; Wang F; Zhang H; Zhu L
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Element Modeling of Tensile Deformation Behaviors of Iron Syntactic Foam with Hollow Glass Microspheres.
    Cho YJ; Lee W; Park YH
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29048346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Properties and Constitutive Model Applied to the High-Speed Impact of Aluminum Foam That Considers Its Meso-Structural Parameters.
    Guo Q; Li W; Yao W; Wang X; Huang C
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early Compressive Deformation of Closed-Cell Aluminum Foam Based on a Three-Dimensional Realistic Structure.
    Wan X; Zhu K; Xu Y; Han B; Jing T
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31163578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-Mechanical Coupling Model of Bond-Based Peridynamics for Quasi-Brittle Materials.
    Zhang H; Liu L; Lai X; Mei H; Liu X
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material.
    Les CM; Stover SM; Keyak JH; Taylor KT; Kaneps AJ
    J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-lapsed microstructural imaging of bone failure behavior.
    Nazarian A; Müller R
    J Biomech; 2004 Jan; 37(1):55-65. PubMed ID: 14672568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.
    Wang J; Wang N; Liu X; Ding J; Xia X; Chen X; Zhao W
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29734700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Modeling and Experimental Behavior of Closed-Cell Aluminum Foam Fabricated by the Gas Blowing Method under Compressive Loading.
    Sharma V; Zivic F; Grujovic N; Babcsan N; Babcsan J
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study.
    Yang Harmony TC; Yusof N; Ramalingam S; Baharin R; Syahrom A; Mansor A
    Clin Orthop Relat Res; 2022 Feb; 480(2):407-418. PubMed ID: 34491235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure.
    Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y
    J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependent change in equilibrium elastic modulus after thermally induced stress relaxation in porcine septal cartilage.
    Protsenko DE; Zemek A; Wong BJ
    Lasers Surg Med; 2008 Mar; 40(3):202-10. PubMed ID: 18366085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermo-Mechanical Behaviour of Human Nasal Cartilage.
    Fertuzinhos A; Teixeira MA; Goncalves Ferreira M; Fernandes R; Correia R; Malheiro AR; Flores P; Zille A; Dourado N
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.