These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38732670)

  • 1. Development of Microparticle Implanted PVDF-HF Polymer Coating on Building Material for Daytime Radiative Cooling.
    Saeed U; Altamimi MMS; Al-Turaif H
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BaSO
    Altamimi MMS; Saeed U; Al-Turaif H
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrawhite BaSO
    Li X; Peoples J; Yao P; Ruan X
    ACS Appl Mater Interfaces; 2021 May; 13(18):21733-21739. PubMed ID: 33856776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daytime Radiative Cooling Coating Based on the Y
    Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling.
    Son S; Liu Y; Chae D; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO
    Han D; Wang C; Han CB; Cui Y; Ren WR; Zhao WK; Jiang Q; Yan H
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9303-9312. PubMed ID: 38343044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling.
    Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures.
    Cai Y; Zhang Z; Yang Z; Fang Z; Chen S; Zhang X; Li W; Zhang Y; Zhang H; Sun Z; Zhang Y; Li Y; Liu L; Zhang W; Xue X
    Heliyon; 2023 Apr; 9(4):e14599. PubMed ID: 37089341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity.
    Zhong H; Zhang P; Li Y; Yang X; Zhao Y; Wang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51409-51417. PubMed ID: 33147941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daytime radiative cooler using porous TiO
    Zahir M; Benlattar M
    Appl Opt; 2020 Oct; 59(30):9400-9408. PubMed ID: 33104657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling.
    Li L; Liu G; Zhang Q; Zhao H; Shi R; Wang C; Li Z; Zhou B; Zhang Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6504-6512. PubMed ID: 38267401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BaSO
    Wu T; Zou Q; Li Z; Chen B; Gao W; Sun Q; Zhao S
    Langmuir; 2024 Jan; 40(1):638-646. PubMed ID: 38103026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Nanoporous MgHPO
    Huang X; Li N; Wang J; Liu D; Xu J; Zhang Z; Zhong M
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2252-2258. PubMed ID: 31886998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Manipulative Pore Formation upon Polymeric Coating for the Endowment of the Switchable Property between Passive Daytime Radiative Cooling and Heating.
    Cui P; Yan Y; Wei H; Wu S; Zhong S; Sun W
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):44044-44054. PubMed ID: 39122692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling.
    Liu R; Zhou Z; Mo X; Liu P; Hu B; Duan J; Zhou J
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46972-46979. PubMed ID: 36215717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling.
    Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE
    Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colourful phase change material-incorporated flexible film for efficient passive radiative cooling.
    Zhang Y; Liu X; Li Z; Xie W; Lou X; Fan Y; Cao K; Liu G; Kondo H; Zhou H
    Nanotechnology; 2023 Jul; 34(41):. PubMed ID: 37406621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable-morphology polymer blend photonic metafoam for radiative cooling.
    Wang Y; Wang T; Liang J; Wu J; Yang M; Pan Y; Hou C; Liu C; Shen C; Tao G; Liu X
    Mater Horiz; 2023 Oct; 10(11):5060-5070. PubMed ID: 37661692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.