BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38732788)

  • 1. Improvement of Phased Antenna Array Applied in Focused Microwave Breast Hyperthermia.
    Wang X; Xi Z; Ye K; Gong Z; Chen Y; Wang X
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Preclinical System Prototype for Focused Microwave Breast Hyperthermia Guided by Compressive Thermoacoustic Tomography.
    Li J; Wang B; Zhang D; Li C; Zhu Y; Zou Y; Chen B; Wu T; Wang X
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2289-2300. PubMed ID: 33646944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Study on Tumor-Size-Dependent Thermal Profiles inside an Anthropomorphic Female Breast Phantom Subjected to Multi-Dipole Antenna Array.
    Gas P; Miaskowski A; Subramanian M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Ultra-Wideband Phased Array Applicator for Breast Cancer Hyperthermia Therapy.
    Lyu C; Li W; Li S; Mao Y; Yang B
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D computational study of non-invasive patient-specific microwave hyperthermia treatment of breast cancer.
    Zastrow E; Hagness SC; Van Veen BD
    Phys Med Biol; 2010 Jul; 55(13):3611-29. PubMed ID: 20526033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays.
    Geyikoglu MD; Cavusoglu B
    Electromagn Biol Med; 2021 Jul; 40(3):353-360. PubMed ID: 34380339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Site-Specific Microwave Phased Array Hyperthermia Applicators Using 434 MHz Reduced Cavity-Backed Patch Antenna.
    Baskaran D; Arunachalam K
    Bioelectromagnetics; 2020 Dec; 41(8):630-648. PubMed ID: 32956531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Microwave Hyperthermia for Breast Cancer Treatment in a Realistic Environment Using Particle Swarm Optimization.
    Nguyen PT; Abbosh A; Crozier S
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1335-1344. PubMed ID: 28113219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Evolution Optimization of Microwave Focused Hyperthermia Phased Array Excitation for Targeted Breast Cancer Heating.
    Lyu C; Li W; Yang B
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient focusing of microwave hyperthermia for small deep-seated breast tumors treatment using particle swarm optimization.
    Elkayal HA; Ismail NE
    Comput Methods Biomech Biomed Engin; 2021 Jul; 24(9):985-994. PubMed ID: 34132607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preclinical system prototype for focused microwave thermal therapy of the breast.
    Stang J; Haynes M; Carson P; Moghaddam M
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2431-8. PubMed ID: 22614518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterisation of a phased antenna array for intact breast hyperthermia.
    Curto S; Garcia-Miquel A; Suh M; Vidal N; Lopez-Villegas JM; Prakash P
    Int J Hyperthermia; 2018 May; 34(3):250-260. PubMed ID: 28605946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antenna Excitation Optimization with Deep Learning for Microwave Breast Cancer Hyperthermia.
    Yildiz G; Yasar H; Uslu IE; Demirel Y; Akinci MN; Yilmaz T; Akduman I
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of time-multiplexed steering in phased array microwave hyperthermia for head and neck cancer treatment.
    Cappiello G; Drizdal T; Mc Ginley B; O'Halloran M; Glavin M; van Rhoon GC; Jones E; Paulides MM
    Phys Med Biol; 2018 Jul; 63(13):135023. PubMed ID: 29863491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave Hyperthermia of Brain Tumors: A 2D Assessment Parametric Numerical Study.
    Redr J; Pokorny T; Drizdal T; Fiser O; Brunat M; Vrba J; Vrba D
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators.
    Paulides MM; Mestrom RM; Salim G; Adela BB; Numan WC; Drizdal T; Yeo DT; Smolders AB
    Phys Med Biol; 2017 Mar; 62(5):1831-1847. PubMed ID: 28052042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online feedback focusing algorithm for hyperthermia cancer treatment.
    Cheng KS; Stakhursky V; Stauffer P; Dewhirst M; Das SK
    Int J Hyperthermia; 2007 Nov; 23(7):539-54. PubMed ID: 17943551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array.
    Yildiz G; Farhat I; Farrugia L; Bonello J; Zarb-Adami K; Sammut CV; Yilmaz T; Akduman I
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.