BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38732798)

  • 1. Evaluating Vascular Depth-Dependent Changes in Multi-Wavelength PPG Signals Due to Contact Force.
    Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Multi-Parametric Sensor System for Comprehensive Multi-Wavelength Photoplethysmography Characterization.
    Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The advantages of wearable green reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):829-34. PubMed ID: 20703690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features.
    Tiwari A; Gray G; Bondi P; Mahnam A; Falk TH
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-wavelength photoplethysmography method for skin arterial pulse extraction.
    Liu J; Yan BP; Dai WX; Ding XR; Zhang YT; Zhao N
    Biomed Opt Express; 2016 Oct; 7(10):4313-4326. PubMed ID: 27867733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S; Abay TY; Phillips JP; Kyriacou PA
    J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive continuous estimation of blood flow changes in human patellar bone.
    Näslund J; Pettersson J; Lundeberg T; Linnarsson D; Lindberg LG
    Med Biol Eng Comput; 2006 Jun; 44(6):501-9. PubMed ID: 16937201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The analysis of transesophageal oxygen saturation photoplethysmography from different signal sources.
    Mou L; Gong Q; Wei W; Gao B
    J Clin Monit Comput; 2013 Jun; 27(3):365-70. PubMed ID: 23475176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating Sphere Finger-Photoplethysmography: Preliminary Investigation towards Practical Non-Invasive Measurement of Blood Constituents.
    Yamakoshi T; Lee J; Matsumura K; Yamakoshi Y; Rolfe P; Kiyohara D; Yamakoshi K
    PLoS One; 2015; 10(12):e0143506. PubMed ID: 26636974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Wearable Multi-Wavelength Photoplethysmography.
    Ray D; Collins T; Woolley S; Ponnapalli P
    IEEE Rev Biomed Eng; 2023; 16():136-151. PubMed ID: 34669577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of reflectance photoplethysmography on detecting cuff-induced vascular occlusions.
    Abay TY; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():861-4. PubMed ID: 26736398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filtering-induced time shifts in photoplethysmography pulse features measured at different body sites: the importance of filter definition and standardization.
    Liu H; Allen J; Khalid SG; Chen F; Zheng D
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34111855
    [No Abstract]   [Full Text] [Related]  

  • 16. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths.
    Lee J; Kim M; Park HK; Kim IY
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms.
    Baciu VE; Lambert Cause J; Solé Morillo Á; García-Naranjo JC; Stiens J; da Silva B
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoplethysmography for non-invasive in vivo measurement of bone hemodynamics.
    Mateus J; Hargens AR
    Physiol Meas; 2012 Jun; 33(6):1027-42. PubMed ID: 22562998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals.
    Bolanos M; Nazeran H; Haltiwanger E
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.