BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38732798)

  • 21. Noncontact Monitoring of Blood Oxygen Saturation Using Camera and Dual-Wavelength Imaging System.
    Shao D; Liu C; Tsow F; Yang Y; Du Z; Iriya R; Yu H; Tao N
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1091-8. PubMed ID: 26415199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography.
    Spigulis J; Gailite L; Lihachev A; Erts R
    Appl Opt; 2007 Apr; 46(10):1754-9. PubMed ID: 17356618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study.
    Hickey M; Phillips JP; Kyriacou PA
    J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MW-PPG Sensor: An on-Chip Spectrometer Approach.
    Chang CC; Wu CT; Choi BI; Fang TJ
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements.
    Bachir W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123181. PubMed ID: 37506454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison between Speckle Plethysmography and Photoplethysmography during Cold Pressor Test Referenced to Finger Arterial Pressure.
    Herranz Olazabal J; Lorato I; Kling J; Verhoeven M; Wieringa F; Van Hoof C; Verkruijsse W; Hermeling E
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments.
    Askarian B; Jung K; Chong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects.
    Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A
    Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of skin type and wavelength on light wave reflectance.
    Fallow BA; Tarumi T; Tanaka H
    J Clin Monit Comput; 2013 Jun; 27(3):313-7. PubMed ID: 23397431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of vascular aging based on smartphone acquired PPG signals.
    Dall'Olio L; Curti N; Remondini D; Safi Harb Y; Asselbergs FW; Castellani G; Uh HW
    Sci Rep; 2020 Nov; 10(1):19756. PubMed ID: 33184391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography.
    Mejía-Mejía E; May JM; Kyriacou PA
    Comput Methods Programs Biomed; 2022 May; 218():106724. PubMed ID: 35255373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using the multi-parameter variability of photoplethysmographic signals to evaluate short-term cardiovascular regulation.
    Chen X; Liu N; Huang Y; Yun F; Wang J; Li J
    J Clin Monit Comput; 2015 Oct; 29(5):605-12. PubMed ID: 25408376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remote photoplethysmography with consumer smartphone reveals temporal differences between glabrous and nonglabrous skin: Pilot in vivo study.
    Burton T; Saiko G; Cao M; Douplik A
    J Biophotonics; 2023 Jan; 16(1):e202200187. PubMed ID: 36054679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel and low-complexity peak detection algorithm for heart rate estimation from low-amplitude photoplethysmographic (PPG) signals.
    Argüello Prada EJ; Serna Maldonado RD
    J Med Eng Technol; 2018 Nov; 42(8):569-577. PubMed ID: 30920315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.
    Mohamed Yacin S; Srinivasa Chakravarthy V; Manivannan M
    Med Biol Eng Comput; 2011 Nov; 49(11):1241-7. PubMed ID: 21748397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Study on the Effect of Contact Pressure during Physical Activity on Photoplethysmographic Heart Rate Measurements.
    Scardulla F; D'Acquisto L; Colombarini R; Hu S; Pasta S; Bellavia D
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Site Photoplethysmographic and Electrocardiographic System for Arterial Stiffness and Cardiovascular Status Assessment.
    Perpetuini D; Chiarelli AM; Maddiona L; Rinella S; Bianco F; Bucciarelli V; Gallina S; Perciavalle V; Vinciguerra V; Merla A; Fallica G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31861123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiration signals from photoplethysmography.
    Nilsson LM
    Anesth Analg; 2013 Oct; 117(4):859-865. PubMed ID: 23449854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.