These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38732798)

  • 41. A Computational Modeling and Simulation Workflow to Investigate the Impact of Patient-Specific and Device Factors on Hemodynamic Measurements from Non-Invasive Photoplethysmography.
    Fine J; McShane MJ; Coté GL; Scully CG
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36004994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Principles of photoplethysmography and its applications in physiological measurements].
    Shi P; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):899-904. PubMed ID: 24059078
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual Wavelength Photoplethysmography Framework for Heart Rate Calculation.
    Alkhoury L; Choi J; Chandran VD; De Carvalho GB; Pal S; Kam M
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560324
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a Portable All-Wavelength PPG Sensing Device for Robust Adaptive-Depth Measurement: A Spectrometer Approach with a Hydrostatic Measurement Example.
    Chen SH; Chuang YC; Chang CC
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Model for Waveform Dissimilarities in Dual-Depth Reflectance-PPG.
    Moco A; Stuijk S; de Haan G; Wang RK; Verkruysse W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5125-5130. PubMed ID: 30441494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Restoration of Remote PPG Signal through Correspondence with Contact Sensor Signal.
    Kim SE; Yu SG; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On non-invasive measurement of gastric motility from finger photoplethysmographic signal.
    Yacin SM; Manivannan M; Chakravarthy VS
    Ann Biomed Eng; 2010 Dec; 38(12):3744-55. PubMed ID: 20614246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A system for investigating oesophageal photoplethysmographic signals in anaesthetised patients.
    Kyriacou PA; Moye AR; Gregg A; Choi DM; Langford RM; Jones DP
    Med Biol Eng Comput; 1999 Sep; 37(5):639-43. PubMed ID: 10723903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of skin surface temperature on photoplethysmograph.
    Jeong IC; Yoon H; Kang H; Yeom H
    J Healthc Eng; 2014; 5(4):429-38. PubMed ID: 25516126
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Short-term pulse rate variability is better characterized by functional near-infrared spectroscopy than by photoplethysmography.
    Holper L; Seifritz E; Scholkmann F
    J Biomed Opt; 2016 Sep; 21(9):091308. PubMed ID: 27185106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Supervised Approach to Robust Photoplethysmography Quality Assessment.
    Pereira T; Gadhoumi K; Ma M; Liu X; Xiao R; Colorado RA; Keenan KJ; Meisel K; Hu X
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):649-657. PubMed ID: 30951482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of vascular changes on the photoplethysmographic signal at different hand elevations.
    Hickey M; Phillips JP; Kyriacou PA
    Physiol Meas; 2015 Mar; 36(3):425-40. PubMed ID: 25652182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bidirectional Recurrent Auto-Encoder for Photoplethysmogram Denoising.
    Lee J; Sun S; Yang SM; Sohn JJ; Park J; Lee S; Kim HC
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2375-2385. PubMed ID: 30530376
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography.
    Alqudah AM; Qananwah Q; M K Dagamseh A; Qazan S; Albadarneh A; Alzyout A
    Med Hypotheses; 2020 Oct; 143():109870. PubMed ID: 32470788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO₂ sensor.
    Shafique M; Kyriacou PA; Pal SK
    Med Biol Eng Comput; 2012 Jun; 50(6):575-83. PubMed ID: 22555629
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving heart rate monitoring in the obese with time-of-flight photoplethysmography (TOF-PPG): a quantitative analysis of source-detector-distance effect.
    Badolato E; Little A; Le VND
    Opt Express; 2024 Jan; 32(3):4446-4456. PubMed ID: 38297646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
    Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of instantaneous venous blood saturation using the photoplethysmograph waveform.
    Shafqat K; Langford RM; Kyriacou PA
    Physiol Meas; 2015 Oct; 36(10):2203-14. PubMed ID: 26365652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.