These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 38732827)

  • 1. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography.
    Liang H; He W; Xu Z
    Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508
    [No Abstract]   [Full Text] [Related]  

  • 4. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BP-diff: a conditional diffusion model for cuffless continuous BP waveform estimation using U-Net.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2024 Oct; 45(10):. PubMed ID: 39321963
    [No Abstract]   [Full Text] [Related]  

  • 9. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 10. Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals.
    Kamanditya B; Fuadah YN; Mahardika T NQ; Lim KM
    Sci Rep; 2024 Jul; 14(1):16450. PubMed ID: 39014018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation.
    Zhou Y; Tan Z; Liu Y; Cheng H
    Physiol Meas; 2023 Sep; 44(7):. PubMed ID: 37402386
    [No Abstract]   [Full Text] [Related]  

  • 12. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only.
    Hsu YC; Li YH; Chang CC; Harfiya LN
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation.
    Harfiya LN; Chang CC; Li YH
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography.
    Ma C; Zhang P; Song F; Sun Y; Fan G; Zhang T; Feng Y; Zhang G
    IEEE J Biomed Health Inform; 2023 May; 27(5):2219-2230. PubMed ID: 35700247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Cuffless Continuous Blood Pressure Estimation Using 1D Squeeze U-Net Model: A Progress toward mHealth.
    Athaya T; Choi S
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography.
    Kefeng Duan ; Zhiliang Qian ; Atef M; Guoxing Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6385-6388. PubMed ID: 28269709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Refined Blood Pressure Estimation Model Based on Single Channel Photoplethysmography.
    Zhang Y; Ren X; Liang X; Ye X; Zhou C
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):5907-5917. PubMed ID: 36103444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.
    Raju SMTU; Dipto SA; Hossain MI; Chowdhury MAS; Haque F; Nashrah AT; Nishan A; Khan MMH; Hashem MMA
    Med Biol Eng Comput; 2024 Dec; 62(12):3687-3708. PubMed ID: 38963467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.