These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38732925)
1. Low-Cost Recognition of Plastic Waste Using Deep Learning and a Multi-Spectral Near-Infrared Sensor. Martinez-Hernandez U; West G; Assaf T Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732925 [TBL] [Abstract][Full Text] [Related]
2. Qualitative analysis of post-consumer and post-industrial waste via near-infrared, visual and induction identification with experimental sensor-based sorting setup. Friedrich K; Koinig G; Pomberger R; Vollprecht D MethodsX; 2022; 9():101686. PubMed ID: 35478596 [TBL] [Abstract][Full Text] [Related]
3. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Bonifazi G; Capobianco G; Serranti S Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():115-122. PubMed ID: 29525562 [TBL] [Abstract][Full Text] [Related]
4. Quantum cascade laser-based reflectance spectroscopy: a robust approach for the classification of plastic type. Michel APM; Morrison AE; Colson BC; Pardis WA; Moya XA; Harb CC; White HK Opt Express; 2020 Jun; 28(12):17741-17756. PubMed ID: 32679978 [TBL] [Abstract][Full Text] [Related]
5. A new classification scheme of plastic wastes based upon recycling labels. Özkan K; Ergin S; Işık Ş; Işıklı I Waste Manag; 2015 Jan; 35():29-35. PubMed ID: 25453316 [TBL] [Abstract][Full Text] [Related]
6. Development of a new approach based on midwave infrared spectroscopy for post-consumer black plastic waste sorting in the recycling industry. Rozenstein O; Puckrin E; Adamowski J Waste Manag; 2017 Oct; 68():38-44. PubMed ID: 28736049 [TBL] [Abstract][Full Text] [Related]
7. The Minderoo-Monaco Commission on Plastics and Human Health. Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097 [TBL] [Abstract][Full Text] [Related]
9. Multi-sensor characterization for an improved identification of polymers in WEEE recycling. de Lima Ribeiro A; Fuchs MC; Lorenz S; Röder C; Heitmann J; Gloaguen R Waste Manag; 2024 Apr; 178():239-256. PubMed ID: 38417310 [TBL] [Abstract][Full Text] [Related]
10. Classification of household microplastics using a multi-model approach based on Raman spectroscopy. Feng Z; Zheng L; Liu J Chemosphere; 2023 Jun; 325():138312. PubMed ID: 36907487 [TBL] [Abstract][Full Text] [Related]
11. Recycling potential of post-consumer plastic packaging waste in Finland. Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Light Intensity, Sensor Height, and Spectral Pre-Processing Methods when using NIR Spectroscopy to Identify Different Allergen-Containing Powdered Foods. Rady A; Fischer J; Reeves S; Logan B; Watson NJ Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906139 [No Abstract] [Full Text] [Related]
13. Detection of previously frozen poultry through plastic lidding film using portable visible spectral imaging (443-726 NM). Swanson A; Gowen A Poult Sci; 2022 Feb; 101(2):101578. PubMed ID: 34894425 [TBL] [Abstract][Full Text] [Related]
14. Development of an inter-confirmatory plastic characterization system using spectroscopic techniques for waste management. Adarsh UK; Bhoje Gowd E; Bankapur A; Kartha VB; Chidangil S; Unnikrishnan VK Waste Manag; 2022 Aug; 150():339-351. PubMed ID: 35907331 [TBL] [Abstract][Full Text] [Related]
15. Handheld NIR Spectral Sensor Module Based on a Fully-Integrated Detector Array. Ou F; van Klinken A; Ševo P; Petruzzella M; Li C; van Elst DMJ; Hakkel KD; Pagliano F; van Veldhoven RPJ; Fiore A Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146377 [TBL] [Abstract][Full Text] [Related]
16. [State Recognition of Solid Fermentation Process Based on Near Infrared Spectroscopy with Adaboost and Spectral Regression Discriminant Analysis]. Yu S; Liu GH; Xia RS; Jiang H Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):51-4. PubMed ID: 27228739 [TBL] [Abstract][Full Text] [Related]
17. Identification of black plastics with terahertz time-domain spectroscopy and machine learning. Cielecki PP; Hardenberg M; Amariei G; Henriksen ML; Hinge M; Klarskov P Sci Rep; 2023 Dec; 13(1):22399. PubMed ID: 38104201 [TBL] [Abstract][Full Text] [Related]
18. A discrimination model in waste plastics sorting using NIR hyperspectral imaging system. Zheng Y; Bai J; Xu J; Li X; Zhang Y Waste Manag; 2018 Feb; 72():87-98. PubMed ID: 29129466 [TBL] [Abstract][Full Text] [Related]
19. Detection of Plastic Granules and Their Mixtures. Kulko RD; Pletl A; Hanus A; Elser B Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050500 [TBL] [Abstract][Full Text] [Related]
20. A high-resolution dynamic probabilistic material flow analysis of seven plastic polymers; A case study of Norway. Abbasi G; Hauser M; Baldé CP; Bouman EA Environ Int; 2023 Feb; 172():107693. PubMed ID: 36701835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]