These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38732948)

  • 1. Sensors and Sensing Devices Utilizing Electrorheological Fluids and Magnetorheological Materials-A Review.
    Park YJ; Choi SB
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-Dependent Stiffness of a Soft Structure Fabricated from Magnetic-Responsive Materials: Magnetorheological Elastomer and Fluid.
    Song BK; Yoon JY; Hong SW; Choi SB
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Performance-Enhanced Hybrid Magnetorheological Elastomer-Fluid for Semi-Active Vibration Isolation: Static and Dynamic Experimental Characterization.
    Ali A; Salem AMH; Muthalif AGA; Ramli RB; Julai S
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Properties Comparison of Isotropic vs. Anisotropic Hybrid Magnetorheological Elastomer-Fluid.
    Ananzeh HM; Ramli R; Julai S; Muthalif AGA
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review.
    Sharif U; Sun B; Hussain S; Ibrahim DS; Adewale OO; Ashraf S; Bashir F
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Graphite Additives on Magnetization, Resistivity and Electrical Conductivity of Magnetorheological Plastomer.
    Zaini N; Mohamad N; Mazlan SA; Abdul Aziz SA; Choi SB; Hapipi NM; Nordin NA; Nazmi N; Ubaidillah U
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material Characterizations of Gr-Based Magnetorheological Elastomer for Possible Sensor Applications: Rheological and Resistivity Properties.
    Shabdin MK; Abdul Rahman MA; Mazlan SA; ; Hapipi NM; Adiputra D; Abdul Aziz SA; Bahiuddin I; Choi SB
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30691190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Gamma Radiation on the Damping Property of Magnetorheological Elastomer.
    Liao G; Zhang W; Zeng Q; Peng X; Wu W; Liu S; Lan B; Zhang Y
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetostriction Enhancement in Midrange Modulus Magnetorheological Elastomers for Sensor Applications.
    Tasin MA; Aziz SAA; Mazlan SA; Johari MAF; Nordin NA; Yusuf SYM; Choi SB; Bahiuddin I
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Tactile Sensing System Utilizing Magnetorheological Structures for Dynamic Contraction and Relaxation Motions.
    Park YJ; Kim BG; Lee ES; Choi SB
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Tactile Transfer Cell Using Magnetorheological Materials for Robot-Assisted Minimally Invasive Surgery.
    Park YJ; Choi SB
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering mechanical compliance in polymers and composites for the design of smart flexible sensors.
    Sahu S; Tripathy K; Bhattacharjee M; Chopra D
    Chem Commun (Camb); 2024 Apr; 60(33):4382-4394. PubMed ID: 38577734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mexican-Hat-Like Response in a Flexible Tactile Sensor Using a Magnetorheological Elastomer.
    Kawasetsu T; Horii T; Ishihara H; Asada M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Development of Mechanical Stimuli Detectable Sensors, Their Future, and Challenges: A Review.
    Zhu S; Kim D; Jeong C
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
    Li T; Li Y; Zhang T
    Acc Chem Res; 2019 Feb; 52(2):288-296. PubMed ID: 30653299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies.
    Othman W; Lai ZA; Abril C; Barajas-Gamboa JS; Corcelles R; Kroh M; Qasaimeh MA
    Front Robot AI; 2021; 8():705662. PubMed ID: 35071332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles Functionalized by Conducting Polymers and Their Electrorheological and Magnetorheological Applications.
    Dong YZ; Choi K; Kwon SH; Nam JD; Choi HJ
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31941163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugated Polymer-Based Nanocomposites for Pressure Sensors.
    Lai QT; Sun QJ; Tang Z; Tang XG; Zhao XH
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels.
    Li S; Zhou X; Dong Y; Li J
    Macromol Rapid Commun; 2020 Dec; 41(23):e2000444. PubMed ID: 32996221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cylindrical Grip Type of Tactile Device Using Magneto-Responsive Materials Integrated with Surgical Robot Console: Design and Analysis.
    Park YJ; Lee ES; Choi SB
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.