BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38733021)

  • 1. Assessment of Surgeons' Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study.
    Takács K; Lukács E; Levendovics R; Pekli D; Szijártó A; Haidegger T
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Technical Skill Assessment and Mental Load Evaluation in Robot-Assisted Minimally Invasive Surgery.
    Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920087
    [No Abstract]   [Full Text] [Related]  

  • 3. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ergonomic assessment of the first assistant during robot-assisted surgery.
    Van't Hullenaar CDP; Bos P; Broeders IAMJ
    J Robot Surg; 2019 Apr; 13(2):283-288. PubMed ID: 30043126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of Ergonomics in Conventional and Robotic-Assisted Laparoscopic Surgery.
    Pérez-Salazar MJ; Caballero D; Sánchez-Margallo JA; Sánchez-Margallo FM
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training.
    Nagyné Elek R; Haidegger T
    J Clin Med; 2022 Dec; 11(24):. PubMed ID: 36556148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanics-machine learning system for surgical gesture analysis and development of technologies for minimal access surgery.
    Cavallo F; Sinigaglia S; Megali G; Pietrabissa A; Dario P; Mosca F; Cuschieri A
    Surg Innov; 2014 Oct; 21(5):504-12. PubMed ID: 24297781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Automated Skill Assessment Framework Based on Visual Motion Signals and a Deep Neural Network in Robot-Assisted Minimally Invasive Surgery.
    Pan M; Wang S; Li J; Li J; Yang X; Liang K
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires.
    Yu D; Dural C; Morrow MM; Yang L; Collins JW; Hallbeck S; Kjellman M; Forsman M
    Surg Endosc; 2017 Feb; 31(2):877-886. PubMed ID: 27495330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.
    Brown JD; O Brien CE; Leung SC; Dumon KR; Lee DI; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2263-2275. PubMed ID: 28113295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of ergonomic instructions in robot-assisted surgery simulator training.
    Van't Hullenaar CDP; Mertens AC; Ruurda JP; Broeders IAMJ
    Surg Endosc; 2018 May; 32(5):2533-2540. PubMed ID: 29264759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of laparoscopic and robotic ergonomic risk.
    Monfared S; Athanasiadis DI; Umana L; Hernandez E; Asadi H; Colgate CL; Yu D; Stefanidis D
    Surg Endosc; 2022 Nov; 36(11):8397-8402. PubMed ID: 35182219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of real-time virtual reality-based teaching cues on learning needle passing for robot-assisted minimally invasive surgery: a randomized controlled trial.
    Malpani A; Vedula SS; Lin HC; Hager GD; Taylor RH
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1187-1194. PubMed ID: 32385598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance and Capability Assessment in Surgical Subtask Automation.
    Nagy TD; Haidegger T
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ergonomic Robotic Console Configuration in Gynecologic Surgery: An Interventional Study.
    Hokenstad ED; Hallbeck MS; Lowndes BR; Morrow MM; Weaver AL; McGree M; Glaser GE; Occhino JA
    J Minim Invasive Gynecol; 2021 Apr; 28(4):850-859. PubMed ID: 32735942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic Assistance Confers Ambidexterity to Laparoscopic Surgeons.
    Choussein S; Srouji SS; Farland LV; Wietsma A; Missmer SA; Hollis M; Yu RN; Pozner CN; Gargiulo AR
    J Minim Invasive Gynecol; 2018 Jan; 25(1):76-83. PubMed ID: 28734971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surgeons' physical discomfort and symptoms during robotic surgery: a comprehensive ergonomic survey study.
    Lee GI; Lee MR; Green I; Allaf M; Marohn MR
    Surg Endosc; 2017 Apr; 31(4):1697-1706. PubMed ID: 27515836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From dV-Trainer to Real Robotic Console: The Limitations of Robotic Skill Training.
    Yang K; Zhen H; Hubert N; Perez M; Wang XH; Hubert J
    J Surg Educ; 2017; 74(6):1074-1080. PubMed ID: 28462814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.