BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 38733294)

  • 1. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases.
    van Noorden CJF; Yetkin-Arik B; Serrano Martinez P; Bakker N; van Breest Smallenburg ME; Schlingemann RO; Klaassen I; Majc B; Habic A; Bogataj U; Galun SK; Vittori M; Erdani Kreft M; Novak M; Breznik B; Hira VVV
    J Histochem Cytochem; 2024 May; 72(5):329-352. PubMed ID: 38733294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells.
    Nath S; Balling R
    Function (Oxf); 2024; 5(3):zqae008. PubMed ID: 38706962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More Than Meets the Eye Regarding Cancer Metabolism.
    Kubicka A; Matczak K; Łabieniec-Watała M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis.
    Yetkin-Arik B; Vogels IMC; Nowak-Sliwinska P; Weiss A; Houtkooper RH; Van Noorden CJF; Klaassen I; Schlingemann RO
    Sci Rep; 2019 Aug; 9(1):12608. PubMed ID: 31471554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells.
    Lapel M; Weston P; Strassheim D; Karoor V; Burns N; Lyubchenko T; Paucek P; Stenmark KR; Gerasimovskaya EV
    Am J Physiol Cell Physiol; 2017 Jan; 312(1):C56-C70. PubMed ID: 27856430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pairwise chemical genetic screen identifies new inhibitors of glucose transport.
    Ulanovskaya OA; Cui J; Kron SJ; Kozmin SA
    Chem Biol; 2011 Feb; 18(2):222-30. PubMed ID: 21338919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism.
    Stapor P; Wang X; Goveia J; Moens S; Carmeliet P
    J Cell Sci; 2014 Oct; 127(Pt 20):4331-41. PubMed ID: 25179598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warburg effect in Gynecologic cancers.
    Kobayashi Y; Banno K; Kunitomi H; Takahashi T; Takeda T; Nakamura K; Tsuji K; Tominaga E; Aoki D
    J Obstet Gynaecol Res; 2019 Mar; 45(3):542-548. PubMed ID: 30511455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic acidosis switches cancer cells from dependence on glycolysis to OXPHOS and renders them highly sensitive to OXPHOS inhibitors.
    Zeng S; Hu X
    Biochem Biophys Res Commun; 2023 Sep; 671():46-57. PubMed ID: 37295355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic differentiation in the embryonic retina.
    Agathocleous M; Love NK; Randlett O; Harris JJ; Liu J; Murray AJ; Harris WA
    Nat Cell Biol; 2012 Aug; 14(8):859-64. PubMed ID: 22750943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Warburg effect: the metabolic requirements of cell proliferation.
    Vander Heiden MG; Cantley LC; Thompson CB
    Science; 2009 May; 324(5930):1029-33. PubMed ID: 19460998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of energy pathway fluxes in cancer cells - Beyond the Warburg effect.
    Moreno-Sánchez R; Robledo-Cadena DX; Pacheco-Velázquez SC; Vargas Navarro JL; Padilla-Flores JA; Rodríguez-Enríquez S
    Arch Biochem Biophys; 2023 May; 739():109559. PubMed ID: 36906097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactate activates the mitochondrial electron transport chain independently of its metabolism.
    Cai X; Ng CP; Jones O; Fung TS; Ryu KW; Li D; Thompson CB
    Mol Cell; 2023 Nov; 83(21):3904-3920.e7. PubMed ID: 37879334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic implications of non-electrogenic ATP/ADP exchange in cancer cells: A mechanistic basis for the Warburg effect.
    Lemasters JJ
    Biochim Biophys Acta Bioenerg; 2021 Jul; 1862(7):148410. PubMed ID: 33722515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warburg effect or reverse Warburg effect? A review of cancer metabolism.
    Xu XD; Shao SX; Jiang HP; Cao YW; Wang YH; Yang XC; Wang YL; Wang XS; Niu HT
    Oncol Res Treat; 2015; 38(3):117-22. PubMed ID: 25792083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.