These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38733341)

  • 21. Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries.
    Chen T; Zhang Q; Pan J; Xu J; Liu Y; Al-Shroofy M; Cheng YT
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32341-32348. PubMed ID: 27933840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scalable Dry-Pressed Electrodes Based on Holey Graphene.
    Lin Y; Plaza-Rivera CO; Hu L; Connell JW
    Acc Chem Res; 2022 Oct; 55(20):3020-3031. PubMed ID: 36173244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-printing of easily recyclable all-ceramic thick LiCoO
    de la Torre-Gamarra C; García-Suelto MD; Del Rio Santos D; Levenfeld B; Varez A
    J Colloid Interface Sci; 2023 Jul; 642():351-363. PubMed ID: 37011453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Polytetrafluoroethylene-Based Solvent-Free Procedure for the Manufacturing of Lithium-Ion Batteries.
    Wang X; Chen S; Zhang K; Huang L; Shen H; Chen Z; Rong C; Wang G; Jiang Z
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conducting polymer-skinned electroactive materials of lithium-ion batteries: ready for monocomponent electrodes without additional binders and conductive agents.
    Kim JM; Park HS; Park JH; Kim TH; Song HK; Lee SY
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12789-97. PubMed ID: 24988178
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the Reversibility of Lithium Cobalt Oxide Phase Transition in Thick Electrode via Low Tortuosity Design.
    He R; Tian G; Li S; Han Z; Zhong W; Cheng S; Xie J
    Nano Lett; 2022 Mar; 22(6):2429-2436. PubMed ID: 35285233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scalable Binder-Free Freestanding Electrodes Based on a Cellulose Acetate-Assisted Carbon Nanotube Fibrous Network for Practical Flexible Li-Ion Batteries.
    Han JH; Shin KH; Lee YJ
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6375-6384. PubMed ID: 33508939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mussel and Cobweb Inspired High Areal Capacity SPAN Electrode.
    Zuo W; Guo Y; Zhang C; Zhang L; Zhang S
    Small; 2024 Jun; 20(23):e2309126. PubMed ID: 38148313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionally Gradient Silicon/Graphite Composite Electrodes Enabling Stable Cycling and High Capacity for Lithium-Ion Batteries.
    Zhang W; Gui S; Li W; Tu S; Li G; Zhang Y; Sun Y; Xie J; Zhou H; Yang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51954-51964. PubMed ID: 36350880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binder-free Lithium-Ion Battery.
    Yao CJ; Wu Z; Xie J; Yu F; Guo W; Xu ZJ; Li DS; Zhang S; Zhang Q
    ChemSusChem; 2020 May; 13(9):2457-2463. PubMed ID: 31782976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS.
    Kim K; Byun S; Choi J; Hong S; Ryou MH; Lee YM
    Chemphyschem; 2018 Jul; 19(13):1627-1634. PubMed ID: 29603536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binder-Free Electrodes and Their Application for Li-Ion Batteries.
    Kang Y; Deng C; Chen Y; Liu X; Liang Z; Li T; Hu Q; Zhao Y
    Nanoscale Res Lett; 2020 May; 15(1):112. PubMed ID: 32424777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile Composite Binder with Fast Lithium-Ion Transport for LiCoO
    Ye W; He W; Long J; Chen P; Ding B; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17401-17410. PubMed ID: 38537112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.
    Kalluri S; Yoon M; Jo M; Liu HK; Dou SX; Cho J; Guo Z
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28251710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells.
    Stein M; Chen CF; Robles DJ; Rhodes C; Mukherjee PP
    J Vis Exp; 2016 Feb; (108):e53490. PubMed ID: 26863503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interface Engineering of Silicon/Carbon Thin-Film Anodes for High-Rate Lithium-Ion Batteries.
    Tong L; Wang P; Fang W; Guo X; Bao W; Yang Y; Shen S; Qiu F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29242-29252. PubMed ID: 32484322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage.
    Patil N; Aqil A; Ouhib F; Admassie S; Inganäs O; Jérôme C; Detrembleur C
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28869678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteries.
    Nyamaa O; Seo DH; Lee JS; Jeong HM; Huh SC; Yang JH; Dolgor E; Noh JP
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.