BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38733344)

  • 1. Comparison of Sucrose and Trehalose for Protein Stabilization Using Differential Scanning Calorimetry.
    Jonsson O; Lundell A; Rosell J; You S; Ahlgren K; Swenson J
    J Phys Chem B; 2024 May; 128(20):4922-4930. PubMed ID: 38733344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of proteins embedded in sugars and water as studied by dielectric spectroscopy.
    Olsson C; Zangana R; Swenson J
    Phys Chem Chem Phys; 2020 Sep; 22(37):21197-21207. PubMed ID: 32930314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Trehalose for the Stabilization of Proteins.
    Olsson C; Jansson H; Swenson J
    J Phys Chem B; 2016 May; 120(20):4723-31. PubMed ID: 27135987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme.
    Liao YH; Brown MB; Nazir T; Quader A; Martin GP
    Pharm Res; 2002 Dec; 19(12):1847-53. PubMed ID: 12523664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose.
    James S; McManus JJ
    J Phys Chem B; 2012 Aug; 116(34):10182-8. PubMed ID: 22909409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein thermal denaturation and matrix glass transition in different protein-trehalose-water systems.
    Bellavia G; Giuffrida S; Cottone G; Cupane A; Cordone L
    J Phys Chem B; 2011 May; 115(19):6340-6. PubMed ID: 21488647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures.
    Ohtake S; Schebor C; Palecek SP; de Pablo JJ
    Pharm Res; 2004 Sep; 21(9):1615-21. PubMed ID: 15497687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of sugar bioprotective mechanisms on the thermal denaturation of lysozyme from Raman scattering and differential scanning calorimetry investigations.
    Hédoux A; Willart JF; Ionov R; Affouard F; Guinet Y; Paccou L; Lerbret A; Descamps M
    J Phys Chem B; 2006 Nov; 110(45):22886-93. PubMed ID: 17092040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable sugar-based protein formulations by supercritical fluid drying.
    Jovanović N; Bouchard A; Sutter M; Van Speybroeck M; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Int J Pharm; 2008 Jan; 346(1-2):102-8. PubMed ID: 17659851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of global and local mobility in amorphous sucrose and trehalose as determined by differential scanning calorimetry.
    Dranca I; Bhattacharya S; Vyazovkin S; Suryanarayanan R
    Pharm Res; 2009 May; 26(5):1064-72. PubMed ID: 19130185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trehalose or Sucrose: Which of the Two Should be Used for Stabilizing Proteins in the Solid State? A Dilemma Investigated by In Situ Micro-Raman and Dielectric Relaxation Spectroscopies During and After Freeze-Drying.
    Starciuc T; Malfait B; Danede F; Paccou L; Guinet Y; Correia NT; Hedoux A
    J Pharm Sci; 2020 Jan; 109(1):496-504. PubMed ID: 31678247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixing properties of lyophilized protein systems: a spectroscopic and calorimetric study.
    Katayama DS; Carpenter JF; Menard KP; Manning MC; Randolph TW
    J Pharm Sci; 2009 Sep; 98(9):2954-69. PubMed ID: 18623211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal denaturation of myoglobin in water--disaccharide matrixes: relation with the glass transition of the system.
    Bellavia G; Cottone G; Giuffrida S; Cupane A; Cordone L
    J Phys Chem B; 2009 Aug; 113(33):11543-9. PubMed ID: 19719261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the interaction of proteins and disaccharides-The effect of pH and concentration.
    Reichert D; Gröger S; Hackel C
    Biopolymers; 2017 Feb; 107(2):39-45. PubMed ID: 27677543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of protein dynamics as affected by sugars: a neutron scattering study.
    Magazù S; Romeo G; Telling MT
    Eur Biophys J; 2007 Sep; 36(7):685-91. PubMed ID: 17657485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein inactivation in amorphous sucrose and trehalose matrices: effects of phase separation and crystallization.
    Sun WQ; Davidson P
    Biochim Biophys Acta; 1998 Sep; 1425(1):235-44. PubMed ID: 9813347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is trehalose special for preserving dry biomaterials?
    Crowe LM; Reid DS; Crowe JH
    Biophys J; 1996 Oct; 71(4):2087-93. PubMed ID: 8889183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass fragility and the stability of pharmaceutical preparations--excipient selection.
    Hatley RH
    Pharm Dev Technol; 1997 Aug; 2(3):257-64. PubMed ID: 9552453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.