These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38733473)
1. A Computational Predictor for Accurate Identification of Tumor Homing Peptides by Integrating Sequential and Deep BiLSTM Features. Arif R; Kanwal S; Ahmed S; Kabir M Interdiscip Sci; 2024 Jun; 16(2):503-518. PubMed ID: 38733473 [TBL] [Abstract][Full Text] [Related]
2. NEPTUNE: A novel computational approach for accurate and large-scale identification of tumor homing peptides. Charoenkwan P; Schaduangrat N; Lio' P; Moni MA; Manavalan B; Shoombuatong W Comput Biol Med; 2022 Sep; 148():105700. PubMed ID: 35715261 [TBL] [Abstract][Full Text] [Related]
3. Identification of tumor homing peptides by utilizing hybrid feature representation. Zou H; Yang F; Yin Z J Biomol Struct Dyn; 2023 May; 41(8):3405-3412. PubMed ID: 35262448 [TBL] [Abstract][Full Text] [Related]
4. StackTHPred: Identifying Tumor-Homing Peptides through GBDT-Based Feature Selection with Stacking Ensemble Architecture. Guan J; Yao L; Chung CR; Chiang YC; Lee TY Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373494 [TBL] [Abstract][Full Text] [Related]
5. LLM4THP: a computing tool to identify tumor homing peptides by molecular and sequence representation of large language model based on two-layer ensemble model strategy. Yang S; Xu P Amino Acids; 2024 Oct; 56(1):62. PubMed ID: 39404804 [TBL] [Abstract][Full Text] [Related]
6. SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids. Charoenkwan P; Chiangjong W; Nantasenamat C; Moni MA; Lio' P; Manavalan B; Shoombuatong W Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057016 [TBL] [Abstract][Full Text] [Related]
7. A Novel Network Science and Similarity-Searching-Based Approach for Discovering Potential Tumor-Homing Peptides from Antimicrobials. Romero M; Marrero-Ponce Y; Rodríguez H; Agüero-Chapin G; Antunes A; Aguilera-Mendoza L; Martinez-Rios F Antibiotics (Basel); 2022 Mar; 11(3):. PubMed ID: 35326864 [TBL] [Abstract][Full Text] [Related]
8. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning. Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927 [TBL] [Abstract][Full Text] [Related]
9. Integrating multiple sequence features for identifying anticancer peptides. Zou H; Yang F; Yin Z Comput Biol Chem; 2022 Aug; 99():107711. PubMed ID: 35667299 [TBL] [Abstract][Full Text] [Related]
10. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Arif M; Musleh S; Fida H; Alam T Sci Rep; 2024 Jul; 14(1):16992. PubMed ID: 39043738 [TBL] [Abstract][Full Text] [Related]
11. IGPred-HDnet: Prediction of Immunoglobulin Proteins Using Graphical Features and the Hierarchal Deep Learning-Based Approach. Ali Z; Alturise F; Alkhalifah T; Khan YD Comput Intell Neurosci; 2023; 2023():2465414. PubMed ID: 36744119 [No Abstract] [Full Text] [Related]
12. MATHLA: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism. Ye Y; Wang J; Xu Y; Wang Y; Pan Y; Song Q; Liu X; Wan J BMC Bioinformatics; 2021 Jan; 22(1):7. PubMed ID: 33407098 [TBL] [Abstract][Full Text] [Related]
13. StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens. Charoenkwan P; Schaduangrat N; Shoombuatong W BMC Bioinformatics; 2023 Jul; 24(1):301. PubMed ID: 37507654 [TBL] [Abstract][Full Text] [Related]
14. StaBle-ABPpred: a stacked ensemble predictor based on biLSTM and attention mechanism for accelerated discovery of antibacterial peptides. Singh V; Shrivastava S; Kumar Singh S; Kumar A; Saxena S Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34750606 [TBL] [Abstract][Full Text] [Related]
15. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec. Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381 [TBL] [Abstract][Full Text] [Related]
16. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks. Jarada TN; Rokne JG; Alhajj R BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713 [TBL] [Abstract][Full Text] [Related]
17. ACP-ML: A sequence-based method for anticancer peptide prediction. Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519 [TBL] [Abstract][Full Text] [Related]
18. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features. Zhuang J; Gao W; Su R J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833 [TBL] [Abstract][Full Text] [Related]
19. Deep-WET: a deep learning-based approach for predicting DNA-binding proteins using word embedding techniques with weighted features. Mahmud SMH; Goh KOM; Hosen MF; Nandi D; Shoombuatong W Sci Rep; 2024 Feb; 14(1):2961. PubMed ID: 38316843 [TBL] [Abstract][Full Text] [Related]
20. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction. Xuan P; Zhang Y; Cui H; Zhang T; Guo M; Nakaguchi T Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]