These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 38733566)
1. Atmospheric Oxidation Capacity Elevated during 2020 Spring Lockdown in Chengdu, China: Lessons for Future Secondary Pollution Control. Tan Z; Feng M; Liu H; Luo Y; Li W; Song D; Tan Q; Ma X; Lu K; Zhang Y Environ Sci Technol; 2024 May; 58(20):8815-8824. PubMed ID: 38733566 [TBL] [Abstract][Full Text] [Related]
2. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Wang Y; Zhu S; Ma J; Shen J; Wang P; Wang P; Zhang H Sci Total Environ; 2021 May; 768():144796. PubMed ID: 33429116 [TBL] [Abstract][Full Text] [Related]
3. Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown. Fu S; Guo M; Fan L; Deng Q; Han D; Wei Y; Luo J; Qin G; Cheng J Environ Pollut; 2021 Mar; 272():115927. PubMed ID: 33143981 [TBL] [Abstract][Full Text] [Related]
4. Substantial nitrogen oxides emission reduction from China due to COVID-19 and its impact on surface ozone and aerosol pollution. Zhang Q; Pan Y; He Y; Walters WW; Ni Q; Liu X; Xu G; Shao J; Jiang C Sci Total Environ; 2021 Jan; 753():142238. PubMed ID: 33207485 [TBL] [Abstract][Full Text] [Related]
5. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions. Sokhi RS; Singh V; Querol X; Finardi S; Targino AC; Andrade MF; Pavlovic R; Garland RM; Massagué J; Kong S; Baklanov A; Ren L; Tarasova O; Carmichael G; Peuch VH; Anand V; Arbilla G; Badali K; Beig G; Belalcazar LC; Bolignano A; Brimblecombe P; Camacho P; Casallas A; Charland JP; Choi J; Chourdakis E; Coll I; Collins M; Cyrys J; da Silva CM; Di Giosa AD; Di Leo A; Ferro C; Gavidia-Calderon M; Gayen A; Ginzburg A; Godefroy F; Gonzalez YA; Guevara-Luna M; Haque SM; Havenga H; Herod D; Hõrrak U; Hussein T; Ibarra S; Jaimes M; Kaasik M; Khaiwal R; Kim J; Kousa A; Kukkonen J; Kulmala M; Kuula J; La Violette N; Lanzani G; Liu X; MacDougall S; Manseau PM; Marchegiani G; McDonald B; Mishra SV; Molina LT; Mooibroek D; Mor S; Moussiopoulos N; Murena F; Niemi JV; Noe S; Nogueira T; Norman M; Pérez-Camaño JL; Petäjä T; Piketh S; Rathod A; Reid K; Retama A; Rivera O; Rojas NY; Rojas-Quincho JP; San José R; Sánchez O; Seguel RJ; Sillanpää S; Su Y; Tapper N; Terrazas A; Timonen H; Toscano D; Tsegas G; Velders GJM; Vlachokostas C; von Schneidemesser E; Vpm R; Yadav R; Zalakeviciute R; Zavala M Environ Int; 2021 Dec; 157():106818. PubMed ID: 34425482 [TBL] [Abstract][Full Text] [Related]
6. [Impacts of Anthropogenic Emission Reduction on Urban Atmospheric Oxidizing Capacity During the COVID-19 Lockdown]. Zhu JL; Qin MM; Zhu YH; Hu JL Huan Jing Ke Xue; 2024 Feb; 45(2):617-625. PubMed ID: 38471902 [TBL] [Abstract][Full Text] [Related]
7. Amplified ozone pollution in cities during the COVID-19 lockdown. Sicard P; De Marco A; Agathokleous E; Feng Z; Xu X; Paoletti E; Rodriguez JJD; Calatayud V Sci Total Environ; 2020 Sep; 735():139542. PubMed ID: 32447070 [TBL] [Abstract][Full Text] [Related]
8. [Impacts of COVID-19 Lockdown on Air Quality in Shenzhen in Spring 2022]. Liu CF; Zhang AX; Fang Q; Ye YJ; Yang HL; Chen JK; Wu WL; Hou Y; Mo JJ; Fu TM Huan Jing Ke Xue; 2023 Jun; 44(6):3117-3129. PubMed ID: 37309931 [TBL] [Abstract][Full Text] [Related]
9. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O Tan Z; Lu K; Jiang M; Su R; Dong H; Zeng L; Xie S; Tan Q; Zhang Y Sci Total Environ; 2018 Sep; 636():775-786. PubMed ID: 29727844 [TBL] [Abstract][Full Text] [Related]
10. Assessment of air pollution status during COVID-19 lockdown (March-May 2020) over Bangalore City in India. Gouda KC; Singh P; P N; Benke M; Kumari R; Agnihotri G; Hungund KM; M C; B KR; V R; S H Environ Monit Assess; 2021 Jun; 193(7):395. PubMed ID: 34105059 [TBL] [Abstract][Full Text] [Related]
11. Unbalanced emission reductions and adverse meteorological conditions facilitate the formation of secondary pollutants during the COVID-19 lockdown in Beijing. Ma T; Duan F; Ma Y; Zhang Q; Xu Y; Li W; Zhu L; He K Sci Total Environ; 2022 Sep; 838(Pt 1):155970. PubMed ID: 35588831 [TBL] [Abstract][Full Text] [Related]
12. Attributing Increases in Ozone to Accelerated Oxidation of Volatile Organic Compounds at Reduced Nitrogen Oxides Concentrations. Zhang Z; Jiang J; Lu B; Meng X; Herrmann H; Chen J; Li X PNAS Nexus; 2022 Nov; 1(5):pgac266. PubMed ID: 36712335 [TBL] [Abstract][Full Text] [Related]
13. Enhanced photochemical formation of secondary organic aerosols during the COVID-19 lockdown in Northern China. Meng J; Li Z; Zhou R; Chen M; Li Y; Yi Y; Ding Z; Li H; Yan L; Hou Z; Wang G Sci Total Environ; 2021 Mar; 758():143709. PubMed ID: 33223177 [TBL] [Abstract][Full Text] [Related]
14. Atmospheric fate of peroxyacetyl nitrate in suburban Hong Kong and its impact on local ozone pollution. Zeng L; Fan GJ; Lyu X; Guo H; Wang JL; Yao D Environ Pollut; 2019 Sep; 252(Pt B):1910-1919. PubMed ID: 31227349 [TBL] [Abstract][Full Text] [Related]
15. Impact of meteorological condition changes on air quality and particulate chemical composition during the COVID-19 lockdown. Ding J; Dai Q; Li Y; Han S; Zhang Y; Feng Y J Environ Sci (China); 2021 Nov; 109():45-56. PubMed ID: 34607673 [TBL] [Abstract][Full Text] [Related]
16. Enhanced formation of secondary organic aerosol from photochemical oxidation during the COVID-19 lockdown in a background site in Northwest China. Zhong H; Huang RJ; Chang Y; Duan J; Lin C; Chen Y Sci Total Environ; 2021 Jul; 778():144947. PubMed ID: 33725613 [TBL] [Abstract][Full Text] [Related]
17. Temporal characterization and regional contribution to O3 and NOx at an urban and a suburban site in Nanjing, China. Xie M; Zhu K; Wang T; Chen P; Han Y; Li S; Zhuang B; Shu L Sci Total Environ; 2016 May; 551-552():533-45. PubMed ID: 26896582 [TBL] [Abstract][Full Text] [Related]
18. Elucidating the mechanisms of rapid O Li R; Gao Y; Han Y; Zhang Y; Zhang B; Fu H; Wang G Sci Total Environ; 2024 Jan; 906():167622. PubMed ID: 37806584 [TBL] [Abstract][Full Text] [Related]
19. Decisive role of ozone formation control in winter PM Tang MX; Huang XF; Sun TL; Cheng Y; Luo Y; Chen Z; Lin XY; Cao LM; Zhai YH; He LY Environ Pollut; 2022 May; 301():119027. PubMed ID: 35183665 [TBL] [Abstract][Full Text] [Related]
20. Atmospheric oxidation capacity and O Chen G; Liu T; Chen J; Xu L; Hu B; Yang C; Fan X; Li M; Hong Y; Ji X; Chen J; Zhang F J Environ Sci (China); 2024 Feb; 136():68-80. PubMed ID: 37923476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]