These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38733797)

  • 61. The traveling salesman problem: a hierarchical model.
    Graham SM; Joshi A; Pizlo Z
    Mem Cognit; 2000 Oct; 28(7):1191-204. PubMed ID: 11126941
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An efficient approach to the travelling salesman problem using self-organizing maps.
    Vieira FC; Dória Neto AD; Costa JA
    Int J Neural Syst; 2003 Apr; 13(2):59-66. PubMed ID: 12923918
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Active learning of causal structures with deep reinforcement learning.
    Amirinezhad A; Salehkaleybar S; Hashemi M
    Neural Netw; 2022 Oct; 154():22-30. PubMed ID: 35843011
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamic Spectrum Sharing Based on Deep Reinforcement Learning in Mobile Communication Systems.
    Liu S; Pan C; Zhang C; Yang F; Song J
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904826
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks.
    Mulder SA; Wunsch DC
    Neural Netw; 2003; 16(5-6):827-32. PubMed ID: 12850040
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deep reinforcement learning in medical imaging: A literature review.
    Zhou SK; Le HN; Luu K; V Nguyen H; Ayache N
    Med Image Anal; 2021 Oct; 73():102193. PubMed ID: 34371440
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multi disease-prediction framework using hybrid deep learning: an optimal prediction model.
    Ampavathi A; Saradhi TV
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1146-1168. PubMed ID: 33427480
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Solving a combinatorial problem via self-organizing process: an application of the Kohonen algorithm to the traveling salesman problem.
    Fort JC
    Biol Cybern; 1988; 59(1):33-40. PubMed ID: 3401516
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Deep Q-Network-Based Algorithm for Multi-Connectivity Optimization in Heterogeneous Cellular-Networks.
    Hernández-Carlón JJ; Pérez-Romero J; Sallent O; Vilà I; Casadevall F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015940
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
    Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z
    Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Painless and accurate medical image analysis using deep reinforcement learning with task-oriented homogenized automatic pre-processing.
    Yuan D; Liu Y; Xu Z; Zhan Y; Chen J; Lukasiewicz T
    Comput Biol Med; 2023 Feb; 153():106487. PubMed ID: 36603432
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Multi-Objective Evolutionary Approach Based on Graph-in-Graph for Neural Architecture Search of Convolutional Neural Networks.
    Xue Y; Jiang P; Neri F; Liang J
    Int J Neural Syst; 2021 Sep; 31(9):2150035. PubMed ID: 34304718
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hybrid Deep Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-Dimensional Transformation.
    Zang Z; Wang W; Song Y; Lu L; Li W; Wang Y; Zhao Y
    Comput Intell Neurosci; 2019; 2019():7172842. PubMed ID: 31379935
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.
    Mohsen AM
    Comput Intell Neurosci; 2016; 2016():8932896. PubMed ID: 27999590
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On approximating a new generalization of traveling salesman problem.
    Huang Z; Liao X; Naik PA; Lu X
    Heliyon; 2024 May; 10(10):e31297. PubMed ID: 38818174
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling.
    Yuan Y; Li H; Ji L
    Comput Intell Neurosci; 2021; 2021():5672227. PubMed ID: 34608384
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle.
    Bing Z; Meschede C; Chen G; Knoll A; Huang K
    Neural Netw; 2020 Jan; 121():21-36. PubMed ID: 31526952
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimal Tasking of Ground-Based Sensors for Space Situational Awareness Using Deep Reinforcement Learning.
    Siew PM; Linares R
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298209
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Predatory search algorithm with restriction of solution distance.
    Liu C; Wang D
    Biol Cybern; 2005 May; 92(5):293-302. PubMed ID: 15838682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.