These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38733797)

  • 81. Predatory search algorithm with restriction of solution distance.
    Liu C; Wang D
    Biol Cybern; 2005 May; 92(5):293-302. PubMed ID: 15838682
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A solution quality assessment method for swarm intelligence optimization algorithms.
    Zhang Z; Wang GG; Zou K; Zhang J
    ScientificWorldJournal; 2014; 2014():183809. PubMed ID: 25013845
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The generalized quadratic knapsack problem. A neuronal network approach.
    Talaván PM; Yáñez J
    Neural Netw; 2006 May; 19(4):416-28. PubMed ID: 16488117
    [TBL] [Abstract][Full Text] [Related]  

  • 84. DVNE-DRL: dynamic virtual network embedding algorithm based on deep reinforcement learning.
    Xiao X
    Sci Rep; 2023 Nov; 13(1):19789. PubMed ID: 37957350
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Examining multi-objective deep reinforcement learning frameworks for molecular design.
    Al-Jumaily A; Mukaidaisi M; Vu A; Tchagang A; Li Y
    Biosystems; 2023 Oct; 232():104989. PubMed ID: 37544406
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Research on Online Social Network Information Leakage-Tracking Algorithm Based on Deep Learning.
    Han S
    Comput Intell Neurosci; 2022; 2022():1926794. PubMed ID: 35800694
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A dual-population multi-objective evolutionary algorithm driven by generative adversarial networks for benchmarking and protein-peptide docking.
    Cheng H; Wang GG; Chen L; Wang R
    Comput Biol Med; 2024 Jan; 168():107727. PubMed ID: 38029532
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Target Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning.
    Wang Y; Tang C; Wang S; Cheng L; Wang R; Tan M; Hou Z
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3741-3752. PubMed ID: 33560993
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Precedence-Constrained Colored Traveling Salesman Problem: An Augmented Variable Neighborhood Search Approach.
    Xu X; Li J; Zhou M; Yu X
    IEEE Trans Cybern; 2022 Sep; 52(9):9797-9808. PubMed ID: 34033558
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Multi-Objective Optimization of Energy Saving and Throughput in Heterogeneous Networks Using Deep Reinforcement Learning.
    Ryu K; Kim W
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883929
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A novel constructive-optimizer neural network for the traveling salesman problem.
    Saadatmand-Tarzjan M; Khademi M; Akbarzadeh-T MR; Moghaddam HA
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):754-70. PubMed ID: 17702277
    [TBL] [Abstract][Full Text] [Related]  

  • 92. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.
    Zhan SH; Lin J; Zhang ZJ; Zhong YW
    Comput Intell Neurosci; 2016; 2016():1712630. PubMed ID: 27034650
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Dynamic sparse coding-based value estimation network for deep reinforcement learning.
    Zhao H; Li Z; Su W; Xie S
    Neural Netw; 2023 Nov; 168():180-193. PubMed ID: 37757726
    [TBL] [Abstract][Full Text] [Related]  

  • 94. An Opposition-Based Evolutionary Algorithm for Many-Objective Optimization with Adaptive Clustering Mechanism.
    Wang WL; Li W; Wang YL
    Comput Intell Neurosci; 2019; 2019():5126239. PubMed ID: 31191632
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Research and Implementation of Robot Vision Scanning Tracking Algorithm Based on Deep Learning.
    Guo H; Li W; Zhou N; Sun H; Han Z
    Scanning; 2022; 2022():3330427. PubMed ID: 35950087
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
    Hussain A; Muhammad YS; Nauman Sajid M; Hussain I; Mohamd Shoukry A; Gani S
    Comput Intell Neurosci; 2017; 2017():7430125. PubMed ID: 29209364
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Approximate Policy-Based Accelerated Deep Reinforcement Learning.
    Wang X; Gu Y; Cheng Y; Liu A; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1820-1830. PubMed ID: 31398131
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control.
    Lin R; Chen J; Xie L; Su H
    Neural Netw; 2023 Jan; 158():197-215. PubMed ID: 36462366
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Solving the TSP by the AALHNN algorithm.
    Hu Y; Duan Q
    Math Biosci Eng; 2022 Jan; 19(4):3427-3448. PubMed ID: 35341258
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Deep Reinforcement Learning: A Survey.
    Wang X; Wang S; Liang X; Zhao D; Huang J; Xu X; Dai B; Miao Q
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5064-5078. PubMed ID: 36170386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.