BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38733992)

  • 1. A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer.
    Gao G; McClellan J; Barbeira AN; Fiorica PN; Li JL; Mu Z; Olopade OI; Huo D; Im HK
    Am J Hum Genet; 2024 Jun; 111(6):1100-1113. PubMed ID: 38733992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes.
    Gao G; Fiorica PN; McClellan J; Barbeira AN; Li JL; Olopade OI; Im HK; Huo D
    Am J Hum Genet; 2023 Jun; 110(6):950-962. PubMed ID: 37164006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression- and splicing-based multi-tissue transcriptome-wide association studies identified multiple genes for breast cancer by estrogen-receptor status.
    McClellan JC; Li JL; Gao G; Huo D
    Breast Cancer Res; 2024 Mar; 26(1):51. PubMed ID: 38515142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.
    Head ST; Dezem F; Todor A; Yang J; Plummer J; Gayther S; Kar S; Schildkraut J; Epstein MP
    Am J Hum Genet; 2024 Jun; 111(6):1084-1099. PubMed ID: 38723630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical power of transcriptome-wide association studies.
    He R; Xue H; Pan W;
    Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia.
    Guo S; Yang J
    Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of whole blood gene expression and splicing quantitative trait loci during early to mid-lactation of dairy cattle.
    Tang Y; Zhang J; Li W; Liu X; Chen S; Mi S; Yang J; Teng J; Fang L; Yu Y
    BMC Genomics; 2024 May; 25(1):445. PubMed ID: 38711039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers.
    He J; Wen W; Beeghly A; Chen Z; Cao C; Shu XO; Zheng W; Long Q; Guo X
    Nat Commun; 2022 Nov; 13(1):7118. PubMed ID: 36402776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci.
    Ghaffar A; ; Nyholt DR
    Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-Analyses of Splicing and Expression Quantitative Trait Loci Identified Susceptibility Genes of Glioma.
    Patro CPK; Nousome D; ; Lai RK
    Front Genet; 2021; 12():609657. PubMed ID: 33936159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-tissue transcriptome-wide association studies identified 235 genes for intrinsic subtypes of breast cancer.
    Li JL; McClellan JC; Zhang H; Gao G; Huo D
    J Natl Cancer Inst; 2024 Feb; ():. PubMed ID: 38400758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8.
    Parrish RL; Gibson GC; Epstein MP; Yang J
    HGG Adv; 2022 Jan; 3(1):100068. PubMed ID: 35047855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-wide association study identifies novel candidate susceptibility genes for migraine.
    Meyers TJ; Yin J; Herrera VA; Pressman AR; Hoffmann TJ; Schaefer C; Avins AL; Choquet H
    HGG Adv; 2023 Jul; 4(3):100211. PubMed ID: 37415806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits.
    Mancuso N; Shi H; Goddard P; Kichaev G; Gusev A; Pasaniuc B
    Am J Hum Genet; 2017 Mar; 100(3):473-487. PubMed ID: 28238358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics.
    Luningham JM; Chen J; Tang S; De Jager PL; Bennett DA; Buchman AS; Yang J
    Am J Hum Genet; 2020 Oct; 107(4):714-726. PubMed ID: 32961112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
    Lu Y; Beeghly-Fadiel A; Wu L; Guo X; Li B; Schildkraut JM; Im HK; Chen YA; Permuth JB; Reid BM; Teer JK; Moysich KB; Andrulis IL; Anton-Culver H; Arun BK; Bandera EV; Barkardottir RB; Barnes DR; Benitez J; Bjorge L; Brenton J; Butzow R; Caldes T; Caligo MA; Campbell I; Chang-Claude J; Claes KBM; Couch FJ; Cramer DW; Daly MB; deFazio A; Dennis J; Diez O; Domchek SM; Dörk T; Easton DF; Eccles DM; Fasching PA; Fortner RT; Fountzilas G; Friedman E; Ganz PA; Garber J; Giles GG; Godwin AK; Goldgar DE; Goodman MT; Greene MH; Gronwald J; Hamann U; Heitz F; Hildebrandt MAT; Høgdall CK; Hollestelle A; Hulick PJ; Huntsman DG; Imyanitov EN; Isaacs C; Jakubowska A; James P; Karlan BY; Kelemen LE; Kiemeney LA; Kjaer SK; Kwong A; Le ND; Leslie G; Lesueur F; Levine DA; Mattiello A; May T; McGuffog L; McNeish IA; Merritt MA; Modugno F; Montagna M; Neuhausen SL; Nevanlinna H; Nielsen FC; Nikitina-Zake L; Nussbaum RL; Offit K; Olah E; Olopade OI; Olson SH; Olsson H; Osorio A; Park SK; Parsons MT; Peeters PHM; Pejovic T; Peterlongo P; Phelan CM; Pujana MA; Ramus SJ; Rennert G; Risch H; Rodriguez GC; Rodríguez-Antona C; Romieu I; Rookus MA; Rossing MA; Rzepecka IK; Sandler DP; Schmutzler RK; Setiawan VW; Sharma P; Sieh W; Simard J; Singer CF; Song H; Southey MC; Spurdle AB; Sutphen R; Swerdlow AJ; Teixeira MR; Teo SH; Thomassen M; Tischkowitz M; Toland AE; Trichopoulou A; Tung N; Tworoger SS; van Rensburg EJ; Vanderstichele A; Vega A; Edwards DV; Webb PM; Weitzel JN; Wentzensen N; White E; Wolk A; Wu AH; Yannoukakos D; Zorn KK; Gayther SA; Antoniou AC; Berchuck A; Goode EL; Chenevix-Trench G; Sellers TA; Pharoah PDP; Zheng W; Long J
    Cancer Res; 2018 Sep; 78(18):5419-5430. PubMed ID: 30054336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A framework for transcriptome-wide association studies in breast cancer in diverse study populations.
    Bhattacharya A; García-Closas M; Olshan AF; Perou CM; Troester MA; Love MI
    Genome Biol; 2020 Feb; 21(1):42. PubMed ID: 32079541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.