These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38734255)

  • 1. The ideal model for determination the formation potential of priority DBPs during chlorination of free amino acids.
    Li J; Chen J; Li J
    Chemosphere; 2024 Jul; 359():142306. PubMed ID: 38734255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of ClO
    Yao D; Chu W; Bond T; Ding S; Chen S
    Chemosphere; 2018 Apr; 196():25-34. PubMed ID: 29289848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative formation of chlorinated and brominated disinfection byproducts from chlorination and bromination of amino acids.
    Li G; Tian C; Karanfil T; Liu C
    Chemosphere; 2024 Feb; 349():140985. PubMed ID: 38104740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.
    Zhang Y; Chu W; Yao D; Yin D
    J Environ Sci (China); 2017 Aug; 58():322-330. PubMed ID: 28774623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide bonds affect the formation of haloacetamides, an emerging class of N-DBPs in drinking water: free amino acids versus oligopeptides.
    Chu W; Li X; Gao N; Deng Y; Yin D; Li D; Chu T
    Sci Rep; 2015 Sep; 5():14412. PubMed ID: 26394759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutions of dissolved organic matter and disinfection by-products formation in source water during UV-LED (275 nm)/chlorine process.
    Zhao X; Chen C; Chen H; Guo Y; Zhang X; Li M; Cao L; Wang Y; Gong T; Che L; Yang G; Xian Q
    Water Res; 2023 Sep; 243():120284. PubMed ID: 37441900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone.
    Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J
    J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial degradation of typical amino acids and its impact on the formation of trihalomethanes, haloacetonitriles and haloacetamides during chlor(am)ination.
    Zhang R; Wang F; Chu W; Fang C; Wang H; Hou M; Xiao R; Ji G
    Water Res; 2019 Aug; 159():55-64. PubMed ID: 31078752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of CX
    He J; Shi M; Wang F; Duan Y; Zhao T; Shu S; Chu W
    Water Res; 2020 Oct; 185():116099. PubMed ID: 32739696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.
    Liew D; Linge KL; Joll CA
    Environ Monit Assess; 2016 Sep; 188(9):518. PubMed ID: 27523603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using UV/H
    Ding S; Wang F; Chu W; Fang C; Pan Y; Lu S; Gao N
    Water Res; 2019 Dec; 167():115096. PubMed ID: 31577966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water.
    Ding S; Chu W; Krasner SW; Yu Y; Fang C; Xu B; Gao N
    Water Res; 2018 Oct; 142():490-500. PubMed ID: 29920459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of natural organic matter and disinfection byproducts formation by solar photolysis of free available chlorine.
    Chen C; Zhao X; Chen H; Li M; Cao L; Wang Y; Xian Q
    Water Res; 2023 Jul; 239():120020. PubMed ID: 37167852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposition of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation.
    Cao Y; Hu S; Gong T; Xian Q; Xu B
    Water Res; 2019 Aug; 159():365-374. PubMed ID: 31112889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of ozonation on disinfection byproducts formation from phenylalanine during chlorination.
    Huang S; Liu H; Wei K; Zhang L; Ma X; Li Q; Li X; Dietrich AM
    J Environ Sci (China); 2024 Oct; 144():199-211. PubMed ID: 38802231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV/chlorine and chlorination of effluent organic matter fractions: Tracing nitrogenous DBPs using FT-ICR mass spectrometry.
    Wang Y; Xiang Y; Marques Dos Santos M; Wei G; Jiang B; Snyder S; Shang C; Croué JP
    Water Res; 2023 Mar; 231():119646. PubMed ID: 36709566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation kinetics of disinfection byproducts in algal-laden water during chlorination: A new insight into evaluating disinfection formation risk.
    Huang R; Liu Z; Yan B; Zhang J; Liu D; Xu Y; Wang P; Cui F; Liu Z
    Environ Pollut; 2019 Feb; 245():63-70. PubMed ID: 30414550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated risk of haloacetonitrile formation during post-chlorination when applying sulfite/UV advanced reduction technology to eliminate bromate.
    Chen H; Lin T; Yan X; Xu H
    Sci Total Environ; 2022 Feb; 806(Pt 2):150612. PubMed ID: 34597579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.