These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38734259)

  • 1. Revealing sulfur-iron coupling mechanism for enhanced autotrophic denitrification in ecological floating beds.
    Xu F; Peng Y; Gu X; Sun S; Li A; He S
    Bioresour Technol; 2024 Jun; 402():130800. PubMed ID: 38734259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneously enhanced autotrophic-heterotrophic denitrification in iron-based ecological floating bed by plant biomass: Metagenomics insights into microbial communities, functional genes and nitrogen metabolic pathways.
    Peng Y; Gu X; Zhang M; Yan P; Sun S; He S
    Water Res; 2024 Jan; 248():120868. PubMed ID: 37979568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response mechanism of different electron donors for treating secondary effluent in ecological floating bed.
    Sun S; Gu X; Zhang M; Tang L; He S
    Bioresour Technol; 2021 Jul; 332():125083. PubMed ID: 33826983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amorphous Fe substrate enhances nitrogen and phosphorus removal in sulfur autotrophic process.
    Zhou K; Zhang H; Guo D; Gao S; Pei Y; Hou L
    Water Res; 2024 Jun; 256():121581. PubMed ID: 38614032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological iron nitrogen cycle in ecological floating bed: Nitrogen removal improvement and nitrous oxide emission reduction.
    Sun S; Gu X; Zhang M; Tang L; He S; Huang J
    Environ Pollut; 2021 Jan; 268(Pt A):115842. PubMed ID: 33120338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-valent iron coupled plant biomass for enhancing the denitrification performance of ecological floating bed.
    Peng Y; He S; Gu X; Yan P; Tang L
    Bioresour Technol; 2021 Dec; 341():125820. PubMed ID: 34454238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: feasibility, performance and mechanisms.
    Chen Z; Pang C; Wen Q
    Water Res; 2023 Sep; 243():120422. PubMed ID: 37523921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated sulfur- and iron-based autotrophic denitrification process and microbial profiling in an anoxic fluidized-bed membrane bioreactor.
    Zhang L; Song Y; Zuo Y; Huo S; Liang C; Hu C
    Chemosphere; 2019 Apr; 221():375-382. PubMed ID: 30641379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial response mechanism of plants and zero valent iron in ecological floating bed: Synchronous nitrogen, phosphorus removal and greenhouse gas emission reduction.
    Sun S; Zhang M; Gu X; He S; Tang L
    J Environ Manage; 2022 Dec; 324():116326. PubMed ID: 36182841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous nitrate and phosphate removal based on thiosulfate-driven autotrophic denitrification biofilter filled with volcanic rock and sponge iron.
    Miao H; Zeng W; Li J; Liu H; Zhan M; Dai H; Peng Y
    Bioresour Technol; 2022 Dec; 366():128207. PubMed ID: 36328173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixotrophic denitrification improvement in ecological floating bed: Interaction between iron scraps and plant biomass.
    Peng Y; Gu X; Yan P; Sun S; Zhang M; Tang L; He S
    Sci Total Environ; 2023 Feb; 861():160718. PubMed ID: 36481157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical-coupled sulfur-driven autotrophic denitrification for nitrogen removal from raw landfill leachate: Evaluation of performance and mechanisms.
    Liang H; Jia Y; Khanal SK; Huang D; Sun L; Lu H
    Water Res; 2024 Jun; 256():121592. PubMed ID: 38626614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated process of three-dimensional biofilm-electrode with sulfur autotrophic denitrification (3DBER-SAD) for wastewater reclamation.
    Hao R; Meng C; Li J
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7339-48. PubMed ID: 27170320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization.
    Bai Y; Wang S; Zhussupbekova A; Shvets IV; Lee PH; Zhan X
    Water Res; 2023 Mar; 231():119619. PubMed ID: 36689879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed sulfur-iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent.
    Wang S; Liang P; Wu Z; Su F; Yuan L; Sun Y; Wu Q; Huang X
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):415-24. PubMed ID: 25077656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of benzoic acid and lactic acid on the treatment efficiency and microbial community in the sulfur autotrophic denitrification process.
    Du J; Xu B; Ma G; Ma L; Liang J; Li K; Jiao H; Tian B; Li B; Ma L
    Water Environ Res; 2024 Jun; 96(6):e11056. PubMed ID: 38825347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ
    Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic nitrogen removal characteristics of PN-anammox process enhanced by sulfur autotrophic denitrification under mainstream conditions.
    Yuan Y; Li X; Li BL
    Bioresour Technol; 2020 Nov; 316():123926. PubMed ID: 32758922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission.
    Sun S; Liu J; Zhang M; He S
    Bioresour Technol; 2020 Mar; 300():122651. PubMed ID: 31887578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of Sulfur/sponge Iron Ratio for Deep Denitrification and Phosphorus Removal of Reclaimed Water].
    Zhou YQ; Hao RX; Wang Z; Zhu XX; Wan JJ
    Huan Jing Ke Xue; 2016 Jun; 37(6):2229-2234. PubMed ID: 29964890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.