These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38734415)
1. Demonstration of Inappropriate Validation Method for a Cracker Baking Process Using Predictive Modeling. Hildebrandt IM; Riddell LM; Hall NO; James MK; Marks BP J Food Prot; 2024 Jul; 87(7):100298. PubMed ID: 38734415 [TBL] [Abstract][Full Text] [Related]
2. Thermal Inactivation of Salmonella enterica and Nonpathogenic Bacterial Surrogates in Wheat Flour by Baking in a Household Oven. Jung J; Schaffner DW J Food Prot; 2022 Oct; 85(10):1431-1438. PubMed ID: 35880899 [TBL] [Abstract][Full Text] [Related]
3. Validation of a Simulated Commercial English Muffin Baking Process to control Salmonella Contamination. Singh A; Hunt C; Channaiah LH J Food Prot; 2024 Jun; 87(6):100280. PubMed ID: 38642807 [TBL] [Abstract][Full Text] [Related]
4. Modeling the Effects of Product Temperature, Product Moisture, and Process Humidity on Thermal Inactivation of Salmonella in Pistachios during Hot-Air Heating. Casulli KE; Dolan KD; Marks BP J Food Prot; 2021 Jan; 84(1):47-57. PubMed ID: 32818239 [TBL] [Abstract][Full Text] [Related]
5. Validation of a nut muffin baking process and thermal resistance characterization of a 7-serovar Salmonella inoculum in batter when introduced via flour or walnuts. Channaiah LH; Michael M; Acuff JC; Lopez K; Phebus RK; Thippareddi H; Milliken G Int J Food Microbiol; 2019 Apr; 294():27-30. PubMed ID: 30739832 [TBL] [Abstract][Full Text] [Related]
6. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators. Channaiah LH; Holmgren ES; Michael M; Sevart NJ; Milke D; Schwan CL; Krug M; Wilder A; Phebus RK; Thippareddi H; Milliken G J Food Prot; 2016 Apr; 79(4):544-52. PubMed ID: 27052857 [TBL] [Abstract][Full Text] [Related]
7. Predictive Microbial Modeling of Enterococcus faecium NRRL B-2354 Inactivation during Baking of a Multicomponent Low-Moisture Food. Suehr QJ; Liu X; Grasso-Kelley EM; Anderson NM J Food Prot; 2021 Nov; 84(11):1990-2001. PubMed ID: 34189582 [TBL] [Abstract][Full Text] [Related]
8. Validation of the baking process as a kill-step for controlling Salmonella in muffins. Channaiah LH; Michael M; Acuff JC; Phebus RK; Thippareddi H; Olewnik M; Milliken G Int J Food Microbiol; 2017 Jun; 250():1-6. PubMed ID: 28342405 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of thermal inactivation parameters of Salmonella in whole wheat multigrain bread. Channaiah LH; Michael M; Acuff JC; Phebus RK; Thippareddi H; Milliken G Food Microbiol; 2019 Sep; 82():334-341. PubMed ID: 31027791 [TBL] [Abstract][Full Text] [Related]
10. Thermal Inactivation of Salmonella and Listeria monocytogenes in Peanut Butter-Filled Pretzels and Whole Wheat Pita Chips. Kottapalli B; Nguyen SPV; Perez T; Cunningham A J Food Prot; 2019 Feb; 82(2):238-246. PubMed ID: 30667291 [TBL] [Abstract][Full Text] [Related]
11. Impact of Process Temperature, Humidity, and Initial Product Moisture on Thermal Inactivation of Salmonella Enteritidis PT 30 on Pistachios during Hot-Air Heating. Casulli KE; Garces-Vega FJ; Dolan KD; Ryser ET; Harris LJ; Marks BP J Food Prot; 2018 Aug; 81(8):1351-1356. PubMed ID: 30019958 [TBL] [Abstract][Full Text] [Related]
12. Thermal inactivation kinetics for Salmonella enteritidis PT30 on almonds subjected to moist-air convection heating. Jeong S; Marks BP; Orta-Ramirez A J Food Prot; 2009 Aug; 72(8):1602-9. PubMed ID: 19722390 [TBL] [Abstract][Full Text] [Related]
13. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures. Liu S; Rojas RV; Gray P; Zhu MJ; Tang J Food Microbiol; 2018 Sep; 74():92-99. PubMed ID: 29706342 [TBL] [Abstract][Full Text] [Related]
14. Thermal inactivation of Salmonella during hard and soft cookies baking process. Channaiah LH; Michael M; Acuff JC; Phebus RK; Thippareddi H; Milliken G Food Microbiol; 2021 Dec; 100():103874. PubMed ID: 34416949 [TBL] [Abstract][Full Text] [Related]
15. Modeling the Effect of Temperature and Water Activity on the Thermal Resistance of Salmonella Enteritidis PT 30 in Wheat Flour. Smith DF; Hildebrandt IM; Casulli KE; Dolan KD; Marks BP J Food Prot; 2016 Dec; 79(12):2058-2065. PubMed ID: 28221962 [TBL] [Abstract][Full Text] [Related]
16. Validation of a Simulated Commercial Frying Process to Control Channaiah LH; Michael M; Acuff J; Lopez K; Vega D; Milliken G; Thippareddi H; Phebus R Foodborne Pathog Dis; 2018 Dec; 15(12):763-769. PubMed ID: 30407081 [TBL] [Abstract][Full Text] [Related]
17. Reproducibility of Salmonella Thermal Resistance Measurements via Multilaboratory Isothermal Inactivation Experiments. Hildebrandt IM; Marks BP; Anderson NM; Grasso-Kelley EM J Food Prot; 2020 Apr; 83(4):609-614. PubMed ID: 32221564 [TBL] [Abstract][Full Text] [Related]
18. Optimum cooking conditions for shrimp and Atlantic salmon. Brookmire L; Mallikarjunan P; Jahncke M; Grisso R J Food Sci; 2013 Feb; 78(2):S303-13. PubMed ID: 23387897 [TBL] [Abstract][Full Text] [Related]
19. Effect of rapid product desiccation or hydration on thermal resistance of Salmonella enterica serovar enteritidis PT 30 in wheat flour. Smith DF; Marks BP J Food Prot; 2015 Feb; 78(2):281-6. PubMed ID: 25710142 [TBL] [Abstract][Full Text] [Related]
20. Survival of Salmonella in Cookie and Cracker Sandwiches Containing Inoculated, Low-Water Activity Fillings. Beuchat LR; Mann DA J Food Prot; 2015 Oct; 78(10):1828-34. PubMed ID: 26408131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]