These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38734818)

  • 1. Ventral subiculum promotes wakefulness through several pathways in male mice.
    Zhang XF; Li YD; Li Y; Li Y; Xu D; Bi LL; Xu HB
    Neuropsychopharmacology; 2024 Aug; 49(9):1468-1480. PubMed ID: 38734818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical role of the prefrontal cortex in the regulation of hippocampus-accumbens information flow.
    Belujon P; Grace AA
    J Neurosci; 2008 Sep; 28(39):9797-805. PubMed ID: 18815264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol Experience Enhances Glutamatergic Ventral Hippocampal Inputs to D1 Receptor-Expressing Medium Spiny Neurons in the Nucleus Accumbens Shell.
    Kircher DM; Aziz HC; Mangieri RA; Morrisett RA
    J Neurosci; 2019 Mar; 39(13):2459-2469. PubMed ID: 30692226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons.
    Floresco SB; Todd CL; Grace AA
    J Neurosci; 2001 Jul; 21(13):4915-22. PubMed ID: 11425919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing excitatory projections from the ventral subiculum to the nucleus accumbens shell contribute to the MK-801-induced impairment of prepulse inhibition.
    Xue C; Li XH; Liu MQ; Yang XC; Li GH; Xu RJ; Wang J; Zhang WN
    Neurosci Lett; 2020 Jul; 731():135024. PubMed ID: 32380142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventral Subiculum Inputs to Nucleus Accumbens Medial Shell Preferentially Innervate D2R Medium Spiny Neurons and Contain Calcium Permeable AMPARs.
    Boxer EE; Kim J; Dunn B; Aoto J
    J Neurosci; 2023 Feb; 43(7):1166-1177. PubMed ID: 36609456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway.
    Li YD; Luo YJ; Xu W; Ge J; Cherasse Y; Wang YQ; Lazarus M; Qu WM; Huang ZL
    Mol Psychiatry; 2021 Jul; 26(7):2912-2928. PubMed ID: 33057171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The paraventricular thalamus is a critical thalamic area for wakefulness.
    Ren S; Wang Y; Yue F; Cheng X; Dang R; Qiao Q; Sun X; Li X; Jiang Q; Yao J; Qin H; Wang G; Liao X; Gao D; Xia J; Zhang J; Hu B; Yan J; Wang Y; Xu M; Han Y; Tang X; Chen X; He C; Hu Z
    Science; 2018 Oct; 362(6413):429-434. PubMed ID: 30361367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D
    Luo YJ; Li YD; Wang L; Yang SR; Yuan XS; Wang J; Cherasse Y; Lazarus M; Chen JF; Qu WM; Huang ZL
    Nat Commun; 2018 Apr; 9(1):1576. PubMed ID: 29679009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice.
    Wang RF; Guo H; Jiang SY; Liu ZL; Qu WM; Huang ZL; Wang L
    J Neurosci Res; 2021 Jun; 99(6):1689-1703. PubMed ID: 33713502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D1 receptors.
    Taepavarapruk P; Floresco SB; Phillips AG
    Psychopharmacology (Berl); 2000 Aug; 151(2-3):242-51. PubMed ID: 10972471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of projections from ventral subiculum to nucleus accumbens shell in context-induced reinstatement of heroin seeking in rats.
    Bossert JM; Adhikary S; St Laurent R; Marchant NJ; Wang HL; Morales M; Shaham Y
    Psychopharmacology (Berl); 2016 May; 233(10):1991-2004. PubMed ID: 26344108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors.
    Eban-Rothschild A; Rothschild G; Giardino WJ; Jones JR; de Lecea L
    Nat Neurosci; 2016 Oct; 19(10):1356-66. PubMed ID: 27595385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel Arousal Pathways in the Lateral Hypothalamus.
    Heiss JE; Yamanaka A; Kilduff TS
    eNeuro; 2018; 5(4):. PubMed ID: 30225361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prelimbic to Accumbens Core Pathway Is Recruited in a Dopamine-Dependent Manner to Drive Cued Reinstatement of Cocaine Seeking.
    McGlinchey EM; James MH; Mahler SV; Pantazis C; Aston-Jones G
    J Neurosci; 2016 Aug; 36(33):8700-11. PubMed ID: 27535915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of acute and repeated stress on hippocampus and amygdala inputs to the nucleus accumbens shell.
    Gill KM; Grace AA
    Int J Neuropsychopharmacol; 2013 Oct; 16(9):2013-25. PubMed ID: 23745764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventral Tegmental Area Glutamatergic Neurons Facilitated Emergence From Isoflurane Anesthesia Involves Excitation of Lateral Septum GABA-ergic Neurons in Mice.
    Zhang S; Zhang X; Li H; Wang D; Wang S; Wang Y; Zhao G; Dong H; Li J
    Anesth Analg; 2024 Aug; 139(2):397-410. PubMed ID: 38048607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens.
    Gill KM; Grace AA
    Int J Neuropsychopharmacol; 2011 Nov; 14(10):1301-14. PubMed ID: 21211108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit.
    An S; Sun H; Wu M; Xie D; Hu SW; Ding HL; Cao JL
    Curr Biol; 2021 Apr; 31(7):1379-1392.e4. PubMed ID: 33545041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory Projections from the Prefrontal Cortex to Nucleus Accumbens Core D1-MSNs and κ Opioid Receptor Modulate Itch-Related Scratching Behaviors.
    Wu XB; Zhu Q; Gao MH; Yan SX; Gu PY; Zhang PF; Xu ML; Gao YJ
    J Neurosci; 2023 Feb; 43(8):1334-1347. PubMed ID: 36653189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.