These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38734833)
1. Three-dimensional electrochemical-magnetic-thermal coupling model for lithium-ion batteries and its application in battery health monitoring and fault diagnosis. Bai X; Peng D; Chen Y; Ma C; Qu W; Liu S; Luo L Sci Rep; 2024 May; 14(1):10802. PubMed ID: 38734833 [TBL] [Abstract][Full Text] [Related]
2. Online lithium-ion battery intelligent perception for thermal fault detection and localization. Tian L; Dong C; Mu Y; Yu X; Jia H Heliyon; 2024 Feb; 10(4):e25298. PubMed ID: 38370222 [TBL] [Abstract][Full Text] [Related]
3. Experimental analysis and safety assessment of thermal runaway behavior in lithium iron phosphate batteries under mechanical abuse. Chai Z; Li J; Liu Z; Liu Z; Jin X Sci Rep; 2024 Apr; 14(1):8673. PubMed ID: 38622171 [TBL] [Abstract][Full Text] [Related]
4. A Sensor-Fault-Estimation Method for Lithium-Ion Batteries in Electric Vehicles. Lan T; Gao ZW; Yin H; Liu Y Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765794 [TBL] [Abstract][Full Text] [Related]
5. In Situ Detection of Lithium-Ion Battery Pack Capacity Inconsistency Using Magnetic Field Scanning Imaging. Wang H; Dai L; Mao L; Liu Y; Jin Y; Wu Q Small Methods; 2022 Mar; 6(3):e2101358. PubMed ID: 35023624 [TBL] [Abstract][Full Text] [Related]
6. Failure Mechanism and Thermal Runaway in Batteries during Micro-Overcharge Aging at Different Temperatures. Zhang Z; Ji C; Wang Y Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730931 [TBL] [Abstract][Full Text] [Related]
7. High-Frequency AC Heating Strategy of Electric Vehicle Power Battery Pack in Low-Temperature Environment. Cui W; Li Y; Ma ZY; Nie JX; Liu YC ACS Omega; 2024 Mar; 9(11):12753-12767. PubMed ID: 38524469 [TBL] [Abstract][Full Text] [Related]
8. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Jafari S; Byun YC Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223 [TBL] [Abstract][Full Text] [Related]
9. A critical review on renewable battery thermal management system using heat pipes. Afzal A; Abdul Razak RK; Mohammed Samee AD; Kumar R; Ağbulut Ü; Park SG J Therm Anal Calorim; 2023 May; ():1-40. PubMed ID: 37361725 [TBL] [Abstract][Full Text] [Related]
10. Simulation of Dispersion and Explosion Characteristics of LiFePO Zhang M; Yang K; Zhang Q; Chen H; Fan M; Geng M; Wei B; Xie B ACS Omega; 2024 Apr; 9(15):17036-17044. PubMed ID: 38645366 [TBL] [Abstract][Full Text] [Related]
11. Real-Time Temperature Monitoring of Lithium Batteries Based on Ultrasonic Technology. Cheng Y; Zhao S; Shen G; Zhang S; Yao P ACS Omega; 2024 Apr; 9(17):19517-19524. PubMed ID: 38708194 [TBL] [Abstract][Full Text] [Related]
12. Synergistic Dual-Salt Electrolyte for Safe and High-Voltage LiNi Wu C; Wu Y; Xu X; Ren D; Li Y; Chang R; Deng T; Feng X; Ouyang M ACS Appl Mater Interfaces; 2022 Mar; 14(8):10467-10477. PubMed ID: 35191304 [TBL] [Abstract][Full Text] [Related]
13. Development of 2-in-1 Sensors for the Safety Assessment of Lithium-Ion Batteries via Early Detection of Vapors Produced by Electrolyte Solvents. Lupan O; Magariu N; Santos-Carballal D; Ababii N; Offermann J; Pooker P; Hansen S; Siebert L; de Leeuw NH; Adelung R ACS Appl Mater Interfaces; 2023 Jun; 15(22):27340-27356. PubMed ID: 37233739 [TBL] [Abstract][Full Text] [Related]
14. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors. Chen D; Zhao Q; Zheng Y; Xu Y; Chen Y; Ni J; Zhao Y Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420774 [TBL] [Abstract][Full Text] [Related]
15. Power Batteries Health Monitoring: A Magnetic Imaging Method Based on Magnetoelectric Sensors. Chen R; Jiao J; Chen Z; Wang Y; Deng T; Di W; Zhu S; Gong M; Lu L; Xie X; Luo H Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269210 [TBL] [Abstract][Full Text] [Related]
16. Parallel battery pack charging strategy under various ambient temperatures based on minimum lithium plating overpotential control. Yu H; Yang L; Zhang L; Li J; Liu X iScience; 2022 May; 25(5):104243. PubMed ID: 35494236 [TBL] [Abstract][Full Text] [Related]
17. Degradation Mechanism Study and Safety Hazard Analysis of Overdischarge on Commercialized Lithium-ion Batteries. Ma T; Wu S; Wang F; Lacap J; Lin C; Liu S; Wei M; Hao W; Wang Y; Park JW ACS Appl Mater Interfaces; 2020 Dec; 12(50):56086-56094. PubMed ID: 33259203 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the Properties of Fractional Heat Conduction in Porous Electrodes of Lithium-Ion Batteries. Lu X; Li H; Chen N Entropy (Basel); 2021 Feb; 23(2):. PubMed ID: 33562591 [TBL] [Abstract][Full Text] [Related]
19. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Lee KT; Jeong S; Cho J Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931 [TBL] [Abstract][Full Text] [Related]
20. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. Jhu CY; Wang YW; Shu CM; Chang JC; Wu HC J Hazard Mater; 2011 Aug; 192(1):99-107. PubMed ID: 21612866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]