These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38734937)

  • 1. Expanded ROS Generation and Hypoxia Reversal: Excipient-free Self-assembled Nanotheranostics for Enhanced Cancer Photodynamic Immunotherapy.
    Yang J; Ren B; Yin X; Xiang L; Hua Y; Huang X; Wang H; Mao Z; Chen W; Deng J
    Adv Mater; 2024 Jul; 36(30):e2402720. PubMed ID: 38734937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy.
    Guo X; Qu J; Zhu C; Li W; Luo L; Yang J; Yin X; Li Q; Du Y; Chen D; Qiu Y; Lou Y; You J
    Drug Deliv; 2018 Nov; 25(1):585-599. PubMed ID: 29461122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH.
    Zhang Z; Wang R; Huang X; Luo R; Xue J; Gao J; Liu W; Liu F; Feng F; Qu W
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5680-5694. PubMed ID: 31944660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth.
    Lang SA; Moser C; Gaumann A; Klein D; Glockzin G; Popp FC; Dahlke MH; Piso P; Schlitt HJ; Geissler EK; Stoeltzing O
    Clin Cancer Res; 2007 Nov; 13(21):6459-68. PubMed ID: 17975158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photodynamic Therapy Combined with Antihypoxic Signaling and CpG Adjuvant as an In Situ Tumor Vaccine Based on Metal-Organic Framework Nanoparticles to Boost Cancer Immunotherapy.
    Cai Z; Xin F; Wei Z; Wu M; Lin X; Du X; Chen G; Zhang D; Zhang Z; Liu X; Yao C
    Adv Healthc Mater; 2020 Jan; 9(1):e1900996. PubMed ID: 31746153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effect of heat shock protein inhibitor geldanamycin and free radicals on photodynamic therapy of prostate cancer.
    Sun Q; Liu F; Wen Z; Xia J; Li H; Xu Y; Sun S
    J Mater Chem B; 2022 Mar; 10(9):1369-1377. PubMed ID: 35022636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart Nanovesicle-Mediated Immunogenic Cell Death through Tumor Microenvironment Modulation for Effective Photodynamic Immunotherapy.
    Yang W; Zhang F; Deng H; Lin L; Wang S; Kang F; Yu G; Lau J; Tian R; Zhang M; Wang Z; He L; Ma Y; Niu G; Hu S; Chen X
    ACS Nano; 2020 Jan; 14(1):620-631. PubMed ID: 31877023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation.
    Zhou Y; Ren X; Hou Z; Wang N; Jiang Y; Luan Y
    Nanoscale Horiz; 2021 Feb; 6(2):120-131. PubMed ID: 33206735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy.
    Shen Z; Xia J; Ma Q; Zhu W; Gao Z; Han S; Liang Y; Cao J; Sun Y
    Theranostics; 2020; 10(20):9132-9152. PubMed ID: 32802183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROS-responsive self-activatable photosensitizing agent for photodynamic-immunotherapy of cancer.
    Wang N; Zhao Z; Xiao X; Mo L; Yao W; Yang H; Wang J; Wei X; Yuan Y; Yang R; Jiang X
    Acta Biomater; 2023 Jul; 164():511-521. PubMed ID: 37004782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo.
    Lang SA; Klein D; Moser C; Gaumann A; Glockzin G; Dahlke MH; Dietmaier W; Bolder U; Schlitt HJ; Geissler EK; Stoeltzing O
    Mol Cancer Ther; 2007 Mar; 6(3):1123-32. PubMed ID: 17363505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor microenvironment-modulated nanoparticles with cascade energy transfer as internal light sources for photodynamic therapy of deep-seated tumors.
    Dai W; Zhou X; Zhao J; Lei L; Huang Y; Jia F; Tang Z; Ji J; Jin Q
    Biomaterials; 2025 Jan; 312():122743. PubMed ID: 39111233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.
    Ni K; Luo T; Nash GT; Lin W
    Acc Chem Res; 2020 Sep; 53(9):1739-1748. PubMed ID: 32808760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer.
    Wang Y; Xu Y; Song J; Liu X; Liu S; Yang N; Wang L; Liu Y; Zhao Y; Zhou W; Zhang Y
    Int J Nanomedicine; 2024; 19():5837-5858. PubMed ID: 38887692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Membrane-Inspired Polymeric Vesicles for Combined Photothermal and Photodynamic Prostate Cancer Therapy.
    Hu J; Luo H; Qu Q; Liao X; Huang C; Chen J; Cai Z; Bao Y; Chen G; Li B; Cui W
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42511-42520. PubMed ID: 32897691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin enhances EphA2+ tumor cell recognition by specific CD8+ T cells.
    Kawabe M; Mandic M; Taylor JL; Vasquez CA; Wesa AK; Neckers LM; Storkus WJ
    Cancer Res; 2009 Sep; 69(17):6995-7003. PubMed ID: 19690146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors.
    Bai J; Peng C; Lv W; Liu J; Hei Y; Bo X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39055-39065. PubMed ID: 34433248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Hypoxia-Sensitive System via Designing Tumor-Targeted Fullerene-Based Photosensitizer for Multimodal Therapy of Deep Tumor.
    Li L; Fu J; Ye J; Liu L; Sun Z; Wang H; Tan S; Zhen M; Wang C; Bai C
    Adv Mater; 2024 Jun; 36(23):e2310875. PubMed ID: 38450765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable NIR-II Pseudo Conjugate Polymeric Nanoparticles Amplify Photodynamic Immunotherapy via Alleviation of Tumor Hypoxia and Tumor-Associated Macrophage Reprogramming.
    Wan J; Zhang X; Tang D; Liu T; Xiao H
    Adv Mater; 2023 Aug; 35(31):e2209799. PubMed ID: 37276889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Rigid-Flexible" Dual-Ferrocene Chimeric Nanonetwork for Simultaneous Tumor-Targeted Tracing and Photothermal/Photodynamic Therapy.
    Wang S; Zhang R; Li X; Chen Y; Zhu L; Yang B; Wang J; Du YH; Liu J; Ye TT; Wang S
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36142-36156. PubMed ID: 38968001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.