These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38735068)

  • 1. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods.
    Sun S; Wang X; Cheng S; Lei Y; Sun W; Wang K; Li Z
    J Environ Manage; 2024 Jun; 360():121062. PubMed ID: 38735068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review.
    Liang J; Zhang P; Zhang R; Chang J; Chen L; Zhang G; Wang A
    Environ Res; 2024 Feb; 242():117796. PubMed ID: 38040178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.
    Singhania RR; Patel AK; Christophe G; Fontanille P; Larroche C
    Bioresour Technol; 2013 Oct; 145():166-74. PubMed ID: 23339903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment of volatile fatty acids production from protein- and carbohydrate-rich organic wastes.
    Gálvez-Martos JL; Greses S; Magdalena JA; Iribarren D; Tomás-Pejó E; González-Fernández C
    Bioresour Technol; 2021 Feb; 321():124528. PubMed ID: 33333483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review.
    Pervez MN; Mahboubi A; Uwineza C; Zarra T; Belgiorno V; Naddeo V; Taherzadeh MJ
    Sci Total Environ; 2022 Apr; 817():152993. PubMed ID: 35026250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes.
    Yesil H; Calli B; Tugtas AE
    Water Res; 2021 Mar; 192():116831. PubMed ID: 33485265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark fermentation: Production and utilization of volatile fatty acid from different wastes- A review.
    Pandey AK; Pilli S; Bhunia P; Tyagi RD; Surampalli RY; Zhang TC; Kim SH; Pandey A
    Chemosphere; 2022 Feb; 288(Pt 1):132444. PubMed ID: 34626658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession.
    Xiao X; Hu H; Meng X; Huang Z; Feng Y; Gao Q; Ruan W
    Bioresour Technol; 2024 May; 399():130576. PubMed ID: 38479625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?
    Ma H; Chen X; Liu H; Liu H; Fu B
    Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure.
    Jomnonkhaow U; Uwineza C; Mahboubi A; Wainaina S; Reungsang A; Taherzadeh MJ
    Bioresour Technol; 2021 Feb; 321():124456. PubMed ID: 33276207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Bioproduction of volatile fatty acids from excess municipal sludge by multistage countercurrent fermentation].
    Guo L; Liu H; Li X; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2008 Jul; 24(7):1233-9. PubMed ID: 18837401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective separation of nutrients and volatile fatty acids from food wastes using electrodialysis and membrane contactor for resource valorization.
    Kotoka F; Gutierrez L; Verliefde A; Cornelissen E
    J Environ Manage; 2024 Mar; 354():120290. PubMed ID: 38367499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors.
    Aydin S; Yesil H; Tugtas AE
    Bioresour Technol; 2018 Feb; 250():548-555. PubMed ID: 29197778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH.
    Feng L; Chen Y; Zheng X
    Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation.
    Cao J; Zhang Q; Wu S; Luo J; Wu Y; Zhang L; Feng Q; Fang F; Xue Z
    Sci Total Environ; 2019 Jun; 669():540-546. PubMed ID: 30889443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile fatty acids production from waste streams by anaerobic digestion: A critical review of the roles and application of enzymes.
    Feng S; Ngo HH; Guo W; Chang SW; Nguyen DD; Liu Y; Zhang S; Phong Vo HN; Bui XT; Ngoc Hoang B
    Bioresour Technol; 2022 Sep; 359():127420. PubMed ID: 35690239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor.
    Liu H; Wang L; Zhang X; Fu B; Liu H; Li Y; Lu X
    J Hazard Mater; 2019 Mar; 365():912-920. PubMed ID: 30497045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.
    Yesil H; Tugtas AE; Bayrakdar A; Calli B
    Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomic insights into improving mechanisms of Fe
    Yang G; Xu C; Varjani S; Zhou Y; Wc Wong J; Duan G
    Bioresour Technol; 2022 Oct; 361():127703. PubMed ID: 35907599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.