BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38735271)

  • 1. ACP-ESM2: The prediction of anticancer peptides based on pre-trained classifier.
    Song H; Lin X; Zhang H; Yin H
    Comput Biol Chem; 2024 Jun; 110():108091. PubMed ID: 38735271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.
    Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A
    Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.
    Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q
    Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder.
    Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A
    Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only.
    Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticancer Activities of Natural and Synthetic Peptides.
    Hilchie AL; Hoskin DW; Power Coombs MR
    Adv Exp Med Biol; 2019; 1117():131-147. PubMed ID: 30980357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Augmented Sample Selection Framework for Prediction of Anticancer Peptides.
    Tao H; Shan S; Fu H; Zhu C; Liu B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Molecules; 2019 May; 24(10):. PubMed ID: 31121946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information.
    Sun M; Yang S; Hu X; Zhou Y
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective identification and differential analysis of anticancer peptides.
    Zhang L; Hu X; Xiao K; Kong L
    Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation.
    Chen XG; Zhang W; Yang X; Li C; Chen H
    Front Genet; 2021; 12():698477. PubMed ID: 34276801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs.
    Huang Y; Feng Q; Yan Q; Hao X; Chen Y
    Mini Rev Med Chem; 2015; 15(1):73-81. PubMed ID: 25382016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm.
    Yu L; Jing R; Liu F; Luo J; Li Y
    Mol Ther Nucleic Acids; 2020 Dec; 22():862-870. PubMed ID: 33230481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties.
    Huang KY; Tseng YJ; Kao HJ; Chen CH; Yang HH; Weng SL
    Sci Rep; 2021 Jun; 11(1):13594. PubMed ID: 34193950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MDTL-ACP: Anticancer Peptides Prediction Based on Multi-Domain Transfer Learning.
    Cao J; Zhou W; Yu Q; Ji J; Zhang J; He S; Zhu Z
    IEEE J Biomed Health Inform; 2023 Dec; PP():. PubMed ID: 38147420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACP-ML: A sequence-based method for anticancer peptide prediction.
    Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D
    Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACP_MS: prediction of anticancer peptides based on feature extraction.
    Zhou C; Peng D; Liao B; Jia R; Wu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.