BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38735311)

  • 1. Evaluating micro-nano bubbles coupled with rice-crayfish co-culture systems: A field study promoting sustainable rice production intensification.
    Zhang Y; Chen L; Wang M; Lu J; Zhang H; Héroux P; Wang G; Tang L; Liu Y
    Sci Total Environ; 2024 Jul; 933():173162. PubMed ID: 38735311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial Studies on the Effect of the Rice-Duck-Crayfish Ecological Co-Culture System on Physical, Chemical, and Microbiological Properties of Soils: A Field Case Study in Chaohu Lake Basin, Southeast China.
    Yan J; Yu J; Huang W; Pan X; Li Y; Li S; Tao Y; Zhang K; Zhang X
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice-crayfish farming.
    Xu Q; Dai L; Zhou Y; Dou Z; Gao W; Yuan X; Gao H; Zhang H
    Sci Total Environ; 2023 Dec; 905():167629. PubMed ID: 37838042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient status of integrated rice-crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields.
    Wu Y; Li Y; Niu L; Zhang W; Wang L; Zhang H
    Sci Total Environ; 2022 Aug; 836():155706. PubMed ID: 35526617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of the Integrated Rice-Crayfish Farming System with Different Stocking Densities on the Paddy Soil Microbiomes.
    Hou Y; Jia R; Sun W; Li B; Zhu J
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice-crayfish co-culture increases microbial necromass' contribution to the soil nitrogen pool.
    Wang A; Hao X; Chen W; Luo X; Huang Q
    Environ Res; 2023 Jan; 216(Pt 4):114708. PubMed ID: 36372146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sustainability of rice-crayfish coculture systems: a mini review of evidence from Jianghan plain in China.
    Hou J; Styles D; Cao Y; Ye X
    J Sci Food Agric; 2021 Jul; 101(9):3843-3853. PubMed ID: 33336495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of micro-nano bubbles on the remediation of saline-alkali soil with microbial agent.
    Zhang Y; Cai L; Chen L; Zhang H; Li G; Wang G; Cui J; Filatova I; Liu Y
    Sci Total Environ; 2024 Feb; 912():168940. PubMed ID: 38042196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice-crayfish systems are not a panacea for sustaining cleaner food production.
    Hou J; Wang X; Xu Q; Cao Y; Zhang D; Zhu J
    Environ Sci Pollut Res Int; 2021 May; 28(18):22913-22926. PubMed ID: 33432412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in soil microbial community composition and organic carbon fractions in an integrated rice-crayfish farming system in subtropical China.
    Si G; Peng C; Yuan J; Xu X; Zhao S; Xu D; Wu J
    Sci Rep; 2017 Jun; 7(1):2856. PubMed ID: 28588212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems.
    Guo L; Zhao L; Ye J; Ji Z; Tang JJ; Bai K; Zheng S; Hu L; Chen X
    Elife; 2022 Feb; 11():. PubMed ID: 35190027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquaculture Feeds Can Be Outlaws for Eutrophication When Hidden in Rice Fields? A Case Study in Qianjiang, China.
    Liu C; Hu N; Song W; Chen Q; Zhu L
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31766308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of introducing eels on the yields and availability of fertilizer nitrogen in an integrated rice-crayfish system.
    Lv W; Yuan Q; Lv W; Zhou W
    Sci Rep; 2020 Sep; 10(1):14818. PubMed ID: 32908196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destruction of the soil microbial ecological environment caused by the over-utilization of the rice-crayfish co-cropping pattern.
    Zhang Y; Chen M; Zhao YY; Zhang AY; Peng DH; Lu F; Dai CC
    Sci Total Environ; 2021 Sep; 788():147794. PubMed ID: 34029817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive improvement of soil quality and rice yield by flooding-midseason drying-flooding.
    He J; Liu T; Wang W; Wu X; Wang J; Yan W
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7347-7359. PubMed ID: 36167920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking soil resistance and virulence genes in rice-crayfish co-culture systems across China.
    Du S; Feng J; Bi L; Hu HW; Hao X; Huang Q; Liu YR
    Environ Int; 2023 Feb; 172():107789. PubMed ID: 36736026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of rice-prawn (Macrobrachium nipponense) co-culture on the microbial community of soil.
    Yang Z; Feng Y; Zhang S; Hu Y; Tang Y; Gu H; Gu Z; Xv Y; Cai Y; Zhang H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7361-7372. PubMed ID: 36195705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice-duck co-culture integrated different fertilizers reduce P losses and Pb accumulation in subtropical China.
    Gao H; Dai W; Fang K; Yi X; Chen N; Penttinen P; Sha Z; Cao L
    Chemosphere; 2020 Apr; 245():125571. PubMed ID: 31881387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of micro-nano bubble with CO
    Khan P; Wang H; Gao W; Huang F; Khan NA; Shakoor N
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):72033-72044. PubMed ID: 35608762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient accumulation from excessive nutrient surplus caused by shifting from rice monoculture to rice-crayfish rotation.
    Hou J; Zhang D; Zhu J
    Environ Pollut; 2021 Feb; 271():116367. PubMed ID: 33418287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.