These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38735323)

  • 1. Grassland productivity in arid Central Asia depends on the greening rate rather than the growing season length.
    Li J; Han W; Zheng J; Yu X; Tian R; Liu L; Guan J
    Sci Total Environ; 2024 Jul; 933():173155. PubMed ID: 38735323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet.
    Fu G; Shen ZX
    PLoS One; 2016; 11(10):e0165643. PubMed ID: 27798690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia.
    Wu L; Ma X; Dou X; Zhu J; Zhao C
    Sci Total Environ; 2021 Nov; 796():149055. PubMed ID: 34328878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data.
    Xu X; Du H; Fan W; Hu J; Mao F; Dong H
    J Environ Manage; 2019 Sep; 246():605-616. PubMed ID: 31202828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau.
    Fu G; Zhang HR; Sun W
    Sci Total Environ; 2019 Feb; 650(Pt 2):2666-2673. PubMed ID: 30296774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term species-level observations indicate the critical role of soil moisture in regulating China's grassland productivity relative to phenological and climatic factors.
    An S; Chen X; Li F; Wang X; Shen M; Luo X; Ren S; Zhao H; Li Y; Xu L
    Sci Total Environ; 2024 Jun; 929():172553. PubMed ID: 38663615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil moisture dominates the variation of gross primary productivity during hot drought in drylands.
    Qiu R; Han G; Li S; Tian F; Ma X; Gong W
    Sci Total Environ; 2023 Nov; 899():165686. PubMed ID: 37482354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of phenology on the carbon exchange process in grassland and maize cropland ecosystems across a semiarid area of China.
    Du Q; Liu H; Li Y; Xu L; Diloksumpun S
    Sci Total Environ; 2019 Dec; 695():133868. PubMed ID: 31422329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric dryness thresholds of grassland productivity decline in China.
    He P; Han Z; He M; Meng X; Ma X; Liu H; Dong T; Shi M; Sun Z
    J Environ Manage; 2023 Jul; 338():117780. PubMed ID: 36965424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grassland gross carbon dioxide uptake based on an improved model tree ensemble approach considering human interventions: global estimation and covariation with climate.
    Liang W; Lü Y; Zhang W; Li S; Jin Z; Ciais P; Fu B; Wang S; Yan J; Li J; Su H
    Glob Chang Biol; 2017 Jul; 23(7):2720-2742. PubMed ID: 27976458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of climate change on vegetation phenology over the Great Lakes Region of Central Asia from 1982 to 2014.
    Gao X; Zhao D
    Sci Total Environ; 2022 Nov; 845():157227. PubMed ID: 35809736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drought limits vegetation carbon sequestration by affecting photosynthetic capacity of semi-arid ecosystems on the Loess Plateau.
    Li D; Li X; Li Z; Fu Y; Zhang J; Zhao Y; Wang Y; Liang E; Rossi S
    Sci Total Environ; 2024 Feb; 912():168778. PubMed ID: 38008313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of gross primary productivity to climatic drivers during the summer drought of 2018 in Europe.
    Fu Z; Ciais P; Bastos A; Stoy PC; Yang H; Green JK; Wang B; Yu K; Huang Y; Knohl A; Šigut L; Gharun M; Cuntz M; Arriga N; Roland M; Peichl M; Migliavacca M; Cremonese E; Varlagin A; Brümmer C; Gourlez de la Motte L; Fares S; Buchmann N; El-Madany TS; Pitacco A; Vendrame N; Li Z; Vincke C; Magliulo E; Koebsch F
    Philos Trans R Soc Lond B Biol Sci; 2020 Oct; 375(1810):20190747. PubMed ID: 32892724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal, interannual and decadal drivers of tree and grass productivity in an Australian tropical savanna.
    Moore CE; Beringer J; Donohue RJ; Evans B; Exbrayat JF; Hutley LB; Tapper NJ
    Glob Chang Biol; 2018 Jun; 24(6):2530-2544. PubMed ID: 29488666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deeper topsoils enhance ecosystem productivity and climate resilience in arid regions, but not in humid regions.
    Zhang Y; Desai AR; Xiao J; Hartemink AE
    Glob Chang Biol; 2023 Dec; 29(23):6794-6811. PubMed ID: 37731366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water stress factor based on normalized difference water index substantially improved the accuracy of light use efficiency model for arid and semi-arid grasslands.
    Ding L; Li Z; Xu K; Huang M; Shen B; Hou L; Xiao L; Liang S; Shi Z; Wang X; Guo K; Yang Y; Xin X; Chang J
    J Environ Manage; 2024 Jan; 349():119566. PubMed ID: 37976647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent trajectories of future global gross primary productivity and evapotranspiration of terrestrial vegetation in Shared Socioeconomic Pathways.
    Zhou X; Gui H; Xin Q; Dai Y
    Sci Total Environ; 2024 Apr; 919():170580. PubMed ID: 38309360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of climate change and human activities on gross primary productivity in the Heihe River Basin, China.
    Shi X; Shi M; Zhang N; Wu M; Ding H; Li Y; Chen F
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4230-4244. PubMed ID: 35965299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of grassland ecosystem carbon fluxes to precipitation and their environmental factors in the Badain Jaran Desert.
    Yang P; Wang N; Zhao L; Su B; Niu Z; Zhao H
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75805-75821. PubMed ID: 35655020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.