These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. Constanti A; Galvan M J Physiol; 1983 Feb; 335():153-78. PubMed ID: 6875873 [TBL] [Abstract][Full Text] [Related]
5. Optical signals from surface and T system membranes in skeletal muscle fibers. Experiments with the potentiometric dye NK2367. Heiny JA; Vergara J J Gen Physiol; 1982 Aug; 80(2):203-30. PubMed ID: 6981683 [TBL] [Abstract][Full Text] [Related]
6. Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle. Standen NB; Stanfield PR J Physiol; 1979 Sep; 294():497-520. PubMed ID: 512954 [TBL] [Abstract][Full Text] [Related]
7. Inward rectifier current noise in frog skeletal muscle. DeCoursey TE; Dempster J; Hutter OF J Physiol; 1984 Apr; 349():299-327. PubMed ID: 6330346 [TBL] [Abstract][Full Text] [Related]
8. The interaction of potassium with the activation of anomalous rectification in frog muscle membrane. Hestrin S J Physiol; 1981 Aug; 317():497-508. PubMed ID: 6975821 [TBL] [Abstract][Full Text] [Related]
9. Inward rectification in the inner segment of single retinal cone photoreceptors. Maricq AV; Korenbrot JI J Neurophysiol; 1990 Dec; 64(6):1917-28. PubMed ID: 1705964 [TBL] [Abstract][Full Text] [Related]
10. The influence of the permeant ions thallous and potassium on inward rectification in frog skeletal muscle. Ashcroft FM; Stanfield PR J Physiol; 1983 Oct; 343():407-28. PubMed ID: 6315921 [TBL] [Abstract][Full Text] [Related]
11. A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. Mayer ML; Westbrook GL J Physiol; 1983 Jul; 340():19-45. PubMed ID: 6887047 [TBL] [Abstract][Full Text] [Related]
12. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. Standen NB; Stanfield PR J Physiol; 1978 Jul; 280():169-91. PubMed ID: 308537 [TBL] [Abstract][Full Text] [Related]
13. Current-clamp analysis of a time-dependent rectification in rat optic nerve. Eng DL; Gordon TR; Kocsis JD; Waxman SG J Physiol; 1990 Feb; 421():185-202. PubMed ID: 2348391 [TBL] [Abstract][Full Text] [Related]
14. A voltage- and time-dependent rectification in rat dorsal spinal root axons. Birch BD; Kocsis JD; Di Gregorio F; Bhisitkul RB; Waxman SG J Neurophysiol; 1991 Sep; 66(3):719-28. PubMed ID: 1661325 [TBL] [Abstract][Full Text] [Related]
15. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. Leech CA; Stanfield PR J Physiol; 1981; 319():295-309. PubMed ID: 6976432 [TBL] [Abstract][Full Text] [Related]
16. The potassium current underlying delayed rectification in cat ventricular muscle. McDonald TF; Trautwein W J Physiol; 1978 Jan; 274():217-46. PubMed ID: 624994 [TBL] [Abstract][Full Text] [Related]
17. The inward rectifier K+ current underlies oscillatory membrane potential behaviour in bovine pigmented ciliary epithelial cells. Stelling JW; Jacob TJ J Physiol; 1992 Dec; 458():439-56. PubMed ID: 1302273 [TBL] [Abstract][Full Text] [Related]
18. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. Keynes RD; Rojas E; Taylor RE; Vergara J J Physiol; 1973 Mar; 229(2):409-55. PubMed ID: 4724831 [TBL] [Abstract][Full Text] [Related]
19. Inward rectification in neonatal rat spinal motoneurones. Takahashi T J Physiol; 1990 Apr; 423():47-62. PubMed ID: 2388157 [TBL] [Abstract][Full Text] [Related]
20. An improved vaseline gap voltage clamp for skeletal muscle fibers. Hille B; Campbell DT J Gen Physiol; 1976 Mar; 67(3):265-93. PubMed ID: 1083424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]