These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3873543)

  • 1. MgATP specifically controls in vitro self-assembly of vertebrate skeletal myosin in the physiological pH range.
    Pinset-Härström I
    J Mol Biol; 1985 Mar; 182(1):159-72. PubMed ID: 3873543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin thick filaments from adult rabbit skeletal muscles.
    Morel J; D'hahan N; Bayol P; Cerqueira F; Rigault D; Merah Z; Gulik A; Guillo N; Hieu HD; Cabane V; Ferrari M; Figuera Picazo G
    Biochim Biophys Acta; 1999 Nov; 1472(3):413-30. PubMed ID: 10564756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The myosin filament. XII. Effect of MgATP on assembly.
    Chowrashi PK; Pepe FA
    J Muscle Res Cell Motil; 1986 Oct; 7(5):413-20. PubMed ID: 3491833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the effect of phosphorylation of the 20,000 Mr light chain of vertebrate smooth muscle myosin.
    Kendrick-Jones J; Cande WZ; Tooth PJ; Smith RC; Scholey JM
    J Mol Biol; 1983 Mar; 165(1):139-62. PubMed ID: 6133003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of light chain phosphorylation and skeletal myosin on the stability of non-muscle myosin filaments.
    Citi S; Smith RC; Kendrick-Jones J
    J Mol Biol; 1987 Nov; 198(2):253-62. PubMed ID: 3501477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the structure and aggregative properties of the myosin molecule. III. The in vitro aggregative properties of the lobster myosin molecule.
    Siemankowski RF; Zobel CR
    Biochim Biophys Acta; 1976 Feb; 420(2):406-16. PubMed ID: 3216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of magnesium binding to myosin in controlling the state of cross-bridges in skeletal rabbit muscle.
    Reisler E; Liu J; Cheung P
    Biochemistry; 1983 Oct; 22(21):4954-60. PubMed ID: 6685530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules.
    Craig R; Smith R; Kendrick-Jones J
    Nature; 1983 Mar 31-Apr 6; 302(5907):436-9. PubMed ID: 6687627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human platelet myosin. II. In vitro assembly and structure of myosin filaments.
    Niederman R; Pollard TD
    J Cell Biol; 1975 Oct; 67(1):72-92. PubMed ID: 240861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of myosin filaments and minifilaments with actin: a comparative study.
    Strzelecka-Gołaszewska H; Piwowar U
    J Muscle Res Cell Motil; 1984 Feb; 5(1):25-44. PubMed ID: 6232284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerization of vertebrate non-muscle and smooth muscle myosins.
    Kendrick-Jones J; Smith RC; Craig R; Citi S
    J Mol Biol; 1987 Nov; 198(2):241-52. PubMed ID: 3430607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit exchange between smooth muscle myosin filaments.
    Trybus KM; Lowey S
    J Cell Biol; 1987 Dec; 105(6 Pt 2):3021-30. PubMed ID: 3500954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of myosin from the clonal rat glial cell strain C-6.
    Ash JF
    J Biol Chem; 1975 May; 250(9):3560-6. PubMed ID: 123531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADP inhibits the sliding velocity of fluorescent actin filaments on cardiac and skeletal myosins.
    Yamashita H; Sata M; Sugiura S; Momomura S; Serizawa T; Iizuka M
    Circ Res; 1994 Jun; 74(6):1027-33. PubMed ID: 8187272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Order-disorder structural transitions in synthetic filaments of fast and slow skeletal muscle myosins under relaxing and activating conditions.
    Podlubnaya ZA; Malyshev SL; Nieznański K; Stepkowski D
    Acta Biochim Pol; 2000; 47(4):1007-17. PubMed ID: 11996091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry and self-assembly in vertebrate A-filaments.
    Rowe AJ; Maw MC
    Adv Exp Med Biol; 1984; 170():5-20. PubMed ID: 6540040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and polymerization of Acanthamoeba myosin-II filaments.
    Pollard TD
    J Cell Biol; 1982 Dec; 95(3):816-25. PubMed ID: 7153247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actin-facilitated assembly of smooth muscle myosin induces formation of actomyosin fibrils.
    Applegate D; Pardee JD
    J Cell Biol; 1992 Jun; 117(6):1223-30. PubMed ID: 1607384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine triphosphatase activity and "thick filament" formation of chicken gizzard myosin in low salt media.
    Onishi H; Suzuki H; Nakamura K; Takahashi K; Watanabe S
    J Biochem; 1978 Mar; 83(3):835-47. PubMed ID: 147868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of filament length by the regulatory light chains in skeletal and cardiac myosins.
    Margossian SS; Huiatt TW; Slayter HS
    J Biol Chem; 1987 Apr; 262(12):5791-6. PubMed ID: 3571234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.