BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38735525)

  • 21. Beyond binding change: the molecular mechanism of ATP hydrolysis by F
    Nath S
    Front Chem; 2023; 11():1058500. PubMed ID: 37324562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative phosphorylation: kinetic and thermodynamic correlation between electron flow, proton translocation, oxygen consumption and ATP synthesis under close to in vivo concentrations of oxygen.
    Reynafarje BD; Ferreira J
    Int J Med Sci; 2008 Jun; 5(3):143-51. PubMed ID: 18566675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis.
    Nath S
    Bioeng Transl Med; 2019 Jan; 4(1):164-170. PubMed ID: 30680327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular-level understanding of biological energy coupling and transduction: Response to "Chemiosmotic misunderstandings".
    Nath S
    Biophys Chem; 2021 Jan; 268():106496. PubMed ID: 33160142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy landscapes and dynamics of ion translocation through membrane transporters: a meeting ground for physics, chemistry, and biology.
    Nath S
    J Biol Phys; 2021 Dec; 47(4):401-433. PubMed ID: 34792702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria.
    Lemasters JJ; Grunwald R; Emaus RK
    J Biol Chem; 1984 Mar; 259(5):3058-63. PubMed ID: 6321493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial energetic metabolism-some general principles.
    Mazat JP; Ransac S; Heiske M; Devin A; Rigoulet M
    IUBMB Life; 2013 Mar; 65(3):171-9. PubMed ID: 23441039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by F
    Nath S
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-equilibrium thermodynamics of oxidative phosphorylation by inverted inner membrane vesicles of rat liver mitochondria.
    Lemasters JJ; Billica WH
    J Biol Chem; 1981 Dec; 256(24):12949-57. PubMed ID: 7309743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetic aspects of transport of ADP and ATP through the mitochondrial membrane.
    Klingenberg M
    Ciba Found Symp; 1975; (31):105-24. PubMed ID: 238804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis--invited review part 1.
    Nath S
    J Bioenerg Biomembr; 2010 Aug; 42(4):293-300. PubMed ID: 20490637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic modeling of ATP synthesis by ATP synthase and its mechanistic implications.
    Nath S; Jain S
    Biochem Biophys Res Commun; 2000 Jun; 272(3):629-33. PubMed ID: 10860805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel Conceptual Model for the Dual Role of FOF1-ATP Synthase in Cell Life and Cell Death.
    Nath S
    Biomol Concepts; 2020 Aug; 11(1):143-152. PubMed ID: 32827389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonequilibrium thermodynamics and nonlinear kinetics in a cellular signaling switch.
    Qian H; Reluga TC
    Phys Rev Lett; 2005 Jan; 94(2):028101. PubMed ID: 15698232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis--invited review part 2.
    Nath S
    J Bioenerg Biomembr; 2010 Aug; 42(4):301-9. PubMed ID: 20490638
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sigmoidal relation between mitochondrial respiration and log ([ATP]/[ADP])out under conditions of extramitochondrial ATP utilization. Implications for the control and thermodynamics of oxidative phosphorylation.
    Wanders RJ; Westerhoff HV
    Biochemistry; 1988 Oct; 27(20):7832-40. PubMed ID: 3207715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioenergetic scaling: metabolic design and body-size constraints in mammals.
    Dobson GP; Headrick JP
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7317-21. PubMed ID: 7638188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flux response coefficients of linear energy converters.
    Stucki JW
    Biophys Chem; 1983 Sep; 18(2):111-5. PubMed ID: 6626684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.