These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. Yesankar PJ; Patil A; Kapley A; Qureshi A World J Microbiol Biotechnol; 2023 Apr; 39(7):166. PubMed ID: 37076735 [TBL] [Abstract][Full Text] [Related]
4. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. Mars AE; Kasberg T; Kaschabek SR; van Agteren MH; Janssen DB; Reineke W J Bacteriol; 1997 Jul; 179(14):4530-7. PubMed ID: 9226262 [TBL] [Abstract][Full Text] [Related]
5. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars AE; Kingma J; Kaschabek SR; Reineke W; Janssen DB J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Peng R; Fu X; Tian Y; Zhao W; Zhu B; Xu J; Wang B; Wang L; Yao Q Metab Eng; 2014 Nov; 26():100-110. PubMed ID: 25305469 [TBL] [Abstract][Full Text] [Related]
7. Computational study on the interaction of a ring-hydroxylating dioxygenase from Sphingomonas CHY-1 with PAHs. Librando V; Pappalardo M J Mol Graph Model; 2011 Jun; 29(7):915-9. PubMed ID: 21441049 [TBL] [Abstract][Full Text] [Related]
8. X-ray structures of 4-chlorocatechol 1,2-dioxygenase adducts with substituted catechols: new perspectives in the molecular basis of intradiol ring cleaving dioxygenases specificity. Ferraroni M; Kolomytseva M; Scozzafava A; Golovleva L; Briganti F J Struct Biol; 2013 Mar; 181(3):274-82. PubMed ID: 23261399 [TBL] [Abstract][Full Text] [Related]
9. Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters. Göbel M; Kranz OH; Kaschabek SR; Schmidt E; Pieper DH; Reineke W Arch Microbiol; 2004 Oct; 182(2-3):147-56. PubMed ID: 15340793 [TBL] [Abstract][Full Text] [Related]
10. EPR studies of chlorocatechol 1,2-dioxygenase: evidences of iron reduction during catalysis and of the binding of amphipatic molecules. Citadini AP; Pinto AP; Araújo AP; Nascimento OR; Costa-Filho AJ Biophys J; 2005 May; 88(5):3502-8. PubMed ID: 15722436 [TBL] [Abstract][Full Text] [Related]
11. Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Demanèche S; Meyer C; Micoud J; Louwagie M; Willison JC; Jouanneau Y Appl Environ Microbiol; 2004 Nov; 70(11):6714-25. PubMed ID: 15528538 [TBL] [Abstract][Full Text] [Related]
12. Insights in the regulation of the degradation of PAHs in Novosphingobium sp. HR1a and utilization of this regulatory system as a tool for the detection of PAHs. Segura A; Hernández-Sánchez V; Marqués S; Molina L Sci Total Environ; 2017 Jul; 590-591():381-393. PubMed ID: 28285855 [TBL] [Abstract][Full Text] [Related]
13. Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. Kaschabek SR; Kasberg T; Müller D; Mars AE; Janssen DB; Reineke W J Bacteriol; 1998 Jan; 180(2):296-302. PubMed ID: 9440519 [TBL] [Abstract][Full Text] [Related]
14. Liang C; Huang Y; Wang H Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478232 [TBL] [Abstract][Full Text] [Related]
15. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31. Tropel D; Meyer C; Armengaud J; Jouanneau Y Arch Microbiol; 2002 Apr; 177(4):345-51. PubMed ID: 11889489 [TBL] [Abstract][Full Text] [Related]
16. Versatile catechol dioxygenases in Sphingobium scionense WP01 Muthu M; Ophir Y; Macdonald LJ; Vaidya A; Lloyd-Jones G Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2293-2301. PubMed ID: 29959655 [TBL] [Abstract][Full Text] [Related]
17. Role of cis-cis muconic acid in the catalysis of Pseudomonas putida chlorocatechol 1,2-dioxygenase. Melo FA; Araújo AP; Costa-Filho AJ Int J Biol Macromol; 2010 Aug; 47(2):233-7. PubMed ID: 20452370 [TBL] [Abstract][Full Text] [Related]
18. Crystallization and preliminary X-ray diffraction analysis of recombinant chlorocatechol 1,2-dioxygenase from Pseudomonas putida. Rustiguel JK; Pinheiro MP; Araújo AP; Nonato MC Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Apr; 67(Pt 4):507-9. PubMed ID: 21505253 [TBL] [Abstract][Full Text] [Related]
19. [Effect of naphthalene biodegradation plasmids on physiological characteristics of rhizospheric bacteria of the genus Pseudomonas]. Volkova OV; Anokhina TO; Puntus IF; Kochetkov VV; Filonov AE; Boronin AM Prikl Biokhim Mikrobiol; 2005; 41(5):525-9. PubMed ID: 16240650 [TBL] [Abstract][Full Text] [Related]
20. Manipulating intradiol dioxygenases by C-terminus truncation. Nazmi AR; Muthu M; Lloyd-Jones G Enzyme Microb Technol; 2019 Jun; 125():21-28. PubMed ID: 30885321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]