These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 38735993)
1. Advancing molecular modeling and reverse vaccinology in broad-spectrum yellow fever virus vaccine development. da Silva OLT; da Silva MK; Rodrigues-Neto JF; Santos Lima JPM; Manzoni V; Akash S; Fulco UL; Bourhia M; Dawoud TM; Nafidi HA; Sitotaw B; Akter S; Oliveira JIN Sci Rep; 2024 May; 14(1):10842. PubMed ID: 38735993 [TBL] [Abstract][Full Text] [Related]
2. Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. Khan NT; Zinnia MA; Islam ABMMK J Biomol Struct Dyn; 2023 Mar; 41(5):1617-1638. PubMed ID: 34994279 [TBL] [Abstract][Full Text] [Related]
3. Exploiting reverse vaccinology approach for the design of a multiepitope subunit vaccine against the major SARS-CoV-2 variants. Campos DMO; Silva MKD; Barbosa ED; Leow CY; Fulco UL; Oliveira JIN Comput Biol Chem; 2022 Dec; 101():107754. PubMed ID: 36037724 [TBL] [Abstract][Full Text] [Related]
4. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach. Chand Y; Singh S Microb Pathog; 2021 Oct; 159():105150. PubMed ID: 34425197 [TBL] [Abstract][Full Text] [Related]
5. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins. James EA; LaFond RE; Gates TJ; Mai DT; Malhotra U; Kwok WW J Virol; 2013 Dec; 87(23):12794-804. PubMed ID: 24049183 [TBL] [Abstract][Full Text] [Related]
7. Exploring structural antigens of yellow fever virus to design multi-epitope subunit vaccine candidate by utilizing an immuno-informatics approach. Sura K; Rohilla H; Kumar D; Jakhar R; Ahlawat V; Kaushik D; Dangi M; Chhillar AK J Genet Eng Biotechnol; 2023 Dec; 21(1):161. PubMed ID: 38051433 [TBL] [Abstract][Full Text] [Related]
8. Human cytotoxic T lymphocyte responses to live attenuated 17D yellow fever vaccine: identification of HLA-B35-restricted CTL epitopes on nonstructural proteins NS1, NS2b, NS3, and the structural protein E. Co MD; Terajima M; Cruz J; Ennis FA; Rothman AL Virology; 2002 Feb; 293(1):151-63. PubMed ID: 11853408 [TBL] [Abstract][Full Text] [Related]
9. Reverse vaccinology-based multi-epitope vaccine design against Indian group A rotavirus targeting VP7, VP4, and VP6 proteins. Kuri PR; Goswami P Microb Pathog; 2024 Aug; 193():106775. PubMed ID: 38960216 [TBL] [Abstract][Full Text] [Related]
10. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Fadaka AO; Sibuyi NRS; Martin DR; Goboza M; Klein A; Madiehe AM; Meyer M Sci Rep; 2021 Oct; 11(1):19707. PubMed ID: 34611250 [TBL] [Abstract][Full Text] [Related]
11. 3CL hydrolase-based multiepitope peptide vaccine against SARS-CoV-2 using immunoinformatics. Jakhar R; Kaushik S; Gakhar SK J Med Virol; 2020 Oct; 92(10):2114-2123. PubMed ID: 32379348 [TBL] [Abstract][Full Text] [Related]
12. Immunoinformatic-guided novel mRNA vaccine designing to elicit immunogenic responses against the endemic Monkeypox virus. Aiman S; Ali Y; Malik A; Alkholief M; Ahmad A; Akhtar S; Ali S; Khan A; Li C; Shams S J Biomol Struct Dyn; 2024 Aug; 42(12):6292-6306. PubMed ID: 37424185 [TBL] [Abstract][Full Text] [Related]
13. A Systematic, Unbiased Mapping of CD8 Stryhn A; Kongsgaard M; Rasmussen M; Harndahl MN; Østerbye T; Bassi MR; Thybo S; Gabriel M; Hansen MB; Nielsen M; Christensen JP; Randrup Thomsen A; Buus S Front Immunol; 2020; 11():1836. PubMed ID: 32983097 [TBL] [Abstract][Full Text] [Related]
14. Identification of Novel Yellow Fever Class II Epitopes in YF-17D Vaccinees. Mateus J; Grifoni A; Voic H; Angelo MA; Phillips E; Mallal S; Sidney J; Sette A; Weiskopf D Viruses; 2020 Nov; 12(11):. PubMed ID: 33198381 [TBL] [Abstract][Full Text] [Related]
15. Computational vaccinology guided design of multi-epitopes subunit vaccine designing against Hantaan virus and its validation through immune simulations. Ghafoor D; Kousar A; Ahmed W; Khan S; Ullah Z; Ullah N; Khan S; Ahmed S; Khan Z; Riaz R Infect Genet Evol; 2021 Sep; 93():104950. PubMed ID: 34089911 [TBL] [Abstract][Full Text] [Related]
16. Design of a multi-epitope vaccine against six Nocardia species based on reverse vaccinology combined with immunoinformatics. Zhu F; Tan C; Li C; Ma S; Wen H; Yang H; Rao M; Zhang P; Peng W; Cui Y; Chen J; Pan P Front Immunol; 2023; 14():1100188. PubMed ID: 36845087 [TBL] [Abstract][Full Text] [Related]
17. In silico design of a broad-spectrum multiepitope vaccine against influenza virus. Yuan L; Li X; Li M; Bi R; Li Y; Song J; Li W; Yan M; Luo H; Sun C; Shu Y Int J Biol Macromol; 2024 Jan; 254(Pt 3):128071. PubMed ID: 37967595 [TBL] [Abstract][Full Text] [Related]
18. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Yang Z; Bogdan P; Nazarian S Sci Rep; 2021 Feb; 11(1):3238. PubMed ID: 33547334 [TBL] [Abstract][Full Text] [Related]
19. Designing a multi-epitope vaccine for cross-protection against Shigella spp: An immunoinformatics and structural vaccinology study. Nosrati M; Hajizade A; Nazarian S; Amani J; Namvar Vansofla A; Tarverdizadeh Y Mol Immunol; 2019 Dec; 116():106-116. PubMed ID: 31634814 [TBL] [Abstract][Full Text] [Related]
20. Advanced vaccinomic, immunoinformatic, and molecular modeling strategies for designing Multi- epitope vaccines against the Alhassan HH Front Immunol; 2024; 15():1454394. PubMed ID: 39221241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]