BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38736181)

  • 1. New α-Glucosidase Inhibitors from the Whole Plant of
    Hu RD; Lin WY; Feng Q; Liu J; Chen Y; Ji A; Wang C; Cao L; Zhang R; Liu Z; Cui H; Liang Q; Zhang RR
    J Agric Food Chem; 2024 May; 72(20):11452-11464. PubMed ID: 38736181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperpatulones C-G, new spirocyclic polycyclic polyprenylated acylphloroglucinols from the leaves of Hypericum patulum.
    Zhang YX; Ao Z; He YW; Lu JY; Chen XL; Kong LY; Luo JG
    Fitoterapia; 2021 Nov; 155():105063. PubMed ID: 34655700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioassay-guided isolation of α-Glucosidase inhibitory constituents from Hypericum sampsonii.
    Tao L; Xu S; Zhang Z; Li Y; Yang J; Gu W; Yi P; Hao X; Yuan C
    Chin J Nat Med; 2023 Jun; 21(6):443-453. PubMed ID: 37407175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four new polyprenylated acylphloroglucinol derivatives from
    Suo XY; Liu XY; Liu XW; Li XX; Zhu TT; Ji TF; Liu B
    J Asian Nat Prod Res; 2022 Nov; 24(11):1008-1017. PubMed ID: 34969326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycyclic polyprenylated acylphloroglucinols from Hypericum beanii and their hepatoprotective activity.
    Ma Y; Suo X; Li X; Zhu T; Li J; Ji T; Liu B
    Phytochemistry; 2022 Nov; 203():113413. PubMed ID: 36044959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperxylones A and B, two polycyclic polyprenylated acylphloroglucinols with a benzoyl substituted bicyclo[3.2.1]octane core from Hypericum beanii.
    Li XY; Dong RR; Nan MM; Wang XL; Cao TJ; Ying P; Zheng Q; Kong LY; Xu WJ
    Fitoterapia; 2023 Mar; 165():105389. PubMed ID: 36586626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Glucosidase Inhibition Action of Major Flavonoids Identified from Hypericum Attenuatum Choisy and Their Synergistic Effects.
    Jin DX; He JF; Zhang KQ; Luo XG; Zhang TC
    Chem Biodivers; 2021 Oct; 18(10):e2100244. PubMed ID: 34310845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type B polycyclic polyprenylated acylphloroglucinols from the roots of Hypericum beanii.
    Li WX; Xu WJ; Luo J; Yang L; Kong LY
    Chin J Nat Med; 2021 May; 19(5):385-390. PubMed ID: 33941343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites.
    Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S
    Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse polycyclic polyprenylated acylphloroglucinols with anti-neuroinflammatory activity from Hypericum beanii.
    Li YW; Lu WJ; Zhou X; Zhang C; Li XY; Tang PF; Kong LY; Xu WJ
    Bioorg Chem; 2022 Oct; 127():106005. PubMed ID: 35863133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycyclic Polyprenylated Acylphloroglucinol Derivatives from
    Wang J; Shi M; Wang J; Li J; Ji T
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30583604
    [No Abstract]   [Full Text] [Related]  

  • 12. Rapid screening of α-glucosidase inhibitors in Hypericum perforatum L. using bio-affinity chromatography coupled with UPLC/MS.
    Dong Q; Hu N; Yue H; Wang H; Wei Y
    Biomed Chromatogr; 2023 Feb; 37(2):e5536. PubMed ID: 36264709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetra-aryl cyclobutane and stilbenes from the rhizomes of Rheum undulatum and their α-glucosidase inhibitory activity: Biological evaluation, kinetic analysis, and molecular docking simulation.
    Ha MT; Kim M; Kim CS; Park SE; Kim JA; Woo MH; Choi JS; Min BS
    Bioorg Med Chem Lett; 2020 Apr; 30(8):127049. PubMed ID: 32111435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for screening of α-glucosidase inhibitors from Morus alba root bark based on the ligand fishing combined with high-performance liquid chromatography mass spectrometer and molecular docking.
    Wang Z; Li X; Chen M; Liu F; Han C; Kong L; Luo J
    Talanta; 2018 Apr; 180():337-345. PubMed ID: 29332820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triterpenic Acids as Non-Competitive α-Glucosidase Inhibitors from
    Ur Rehman N; Halim SA; Al-Azri M; Khan M; Khan A; Rafiq K; Al-Rawahi A; Csuk R; Al-Harrasi A
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32408614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structurally diverse spirocyclic polycyclic polyprenylated acylphloroglucinols from Hypericum ascyron Linn. and their anti-tumor activity.
    Hu YL; Yue GG; Li XR; Xu G; Lau CB
    Phytochemistry; 2023 Aug; 212():113727. PubMed ID: 37207991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spirocyclic acylphloroglucinol derivatives from Hypericum beanii.
    Chen XQ; Li Y; Li KZ; Peng LY; He J; Wang K; Pan ZH; Cheng X; Li MM; Zhao QS; Xu G
    Chem Pharm Bull (Tokyo); 2011; 59(10):1250-3. PubMed ID: 21963634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological properties of Hertia cheirifolia L. flower extracts and effect of the nopol on α-glucosidase.
    Majouli K; Mahjoub MA; Rahim F; Hamdi A; Wadood A; Besbes Hlila M; Kenani A
    Int J Biol Macromol; 2017 Feb; 95():757-761. PubMed ID: 27939269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined magnetic ligand fishing and high-resolution inhibition profiling for identification of α-glucosidase inhibitory ligands: A new screening approach based on complementary inhibition and affinity profiles.
    Wubshet SG; Liu B; Kongstad KT; Böcker U; Petersen MJ; Li T; Wang J; Staerk D
    Talanta; 2019 Aug; 200():279-287. PubMed ID: 31036185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of α-Glucosidase Inhibitory Metabolites from
    Nokhala A; Siddiqui MJ; Ahmed QU; Ahamad Bustamam MS; Zakaria AZA
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32059529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.