BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38736258)

  • 1. Impact of DNA ligase inhibition on the nick sealing of polβ nucleotide insertion products at the downstream steps of base excision repair pathway.
    Almohdar D; Kamble P; Basavannacharya C; Gulkis M; Calbay O; Huang S; Narayan S; Çağlayan M
    Mutagenesis; 2024 May; ():. PubMed ID: 38736258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps.
    Almohdar D; Murcia D; Tang Q; Ortiz A; Martinez E; Parwal T; Kamble P; Çağlayan M
    J Biol Chem; 2024 May; 300(6):107355. PubMed ID: 38718860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway.
    Almohdar D; Gulkis M; Ortiz A; Tang Q; Sobol RW; Çağlayan M
    J Mol Biol; 2024 Feb; 436(4):168410. PubMed ID: 38135179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair.
    Tang Q; Çağlayan M
    J Biol Chem; 2021 Sep; 297(3):101025. PubMed ID: 34339737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway.
    Gulkis M; Martinez E; Almohdar D; Çağlayan M
    Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair.
    Balu KE; Almohdar D; Ratcliffe J; Tang Q; Parwal T; Çağlayan M
    bioRxiv; 2024 May; ():. PubMed ID: 38766188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair.
    Tang Q; Gulkis M; McKenna R; Çağlayan M
    Nat Commun; 2022 Jul; 13(1):3860. PubMed ID: 35790757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Human XRCC1 Protein Oxidation on the Functional Activity of Its Complexes with the Key Enzymes of DNA Base Excision Repair.
    Vasil'eva IA; Moor NA; Lavrik OI
    Biochemistry (Mosc); 2020 Mar; 85(3):288-299. PubMed ID: 32564733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications.
    Çağlayan M
    DNA Repair (Amst); 2020 Nov; 95():102945. PubMed ID: 32853828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.
    Çağlayan M; Wilson SH
    DNA Repair (Amst); 2015 Nov; 35():85-9. PubMed ID: 26466358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair".
    Çağlayan M; Wilson SH
    DNA Repair (Amst); 2015 Dec; 36():86-90. PubMed ID: 26596511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates.
    Çağlayan M
    Nucleic Acids Res; 2020 Apr; 48(7):3708-3721. PubMed ID: 32140717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human DNA ligases I and IIIα as determinants of accuracy and efficiency of base excision DNA repair.
    Moor NA; Vasil'eva IA; Lavrik OI
    Biochimie; 2024 Apr; 219():84-95. PubMed ID: 37573020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination.
    Gulkis M; Tang Q; Petrides M; Çağlayan M
    Res Sq; 2023 Apr; ():. PubMed ID: 37090517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions.
    Quiñones JL; Demple B
    DNA Repair (Amst); 2016 Aug; 44():103-109. PubMed ID: 27264558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase beta.
    Le Page F; Schreiber V; Dherin C; De Murcia G; Boiteux S
    J Biol Chem; 2003 May; 278(20):18471-7. PubMed ID: 12637553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemical and kinetic perspective on base excision repair of DNA.
    Schermerhorn KM; Delaney S
    Acc Chem Res; 2014 Apr; 47(4):1238-46. PubMed ID: 24646203
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Çağlayan M; Wilson SH
    Bio Protoc; 2017 Jun; 7(12):. PubMed ID: 28835905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase β outperforms DNA polymerase γ in key mitochondrial base excision repair activities.
    Baptiste BA; Baringer SL; Kulikowicz T; Sommers JA; Croteau DL; Brosh RM; Bohr VA
    DNA Repair (Amst); 2021 Mar; 99():103050. PubMed ID: 33540226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.