These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38736258)

  • 1. Impact of DNA ligase inhibition on the nick sealing of polβ nucleotide insertion products at the downstream steps of base excision repair pathway.
    Almohdar D; Kamble P; Basavannacharya C; Gulkis M; Calbay O; Huang S; Narayan S; Çağlayan M
    Mutagenesis; 2024 May; ():. PubMed ID: 38736258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps.
    Almohdar D; Murcia D; Tang Q; Ortiz A; Martinez E; Parwal T; Kamble P; Çağlayan M
    J Biol Chem; 2024 Jun; 300(6):107355. PubMed ID: 38718860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway.
    Almohdar D; Gulkis M; Ortiz A; Tang Q; Sobol RW; Çağlayan M
    J Mol Biol; 2024 Feb; 436(4):168410. PubMed ID: 38135179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair.
    Tang Q; Çağlayan M
    J Biol Chem; 2021 Sep; 297(3):101025. PubMed ID: 34339737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway.
    Gulkis M; Martinez E; Almohdar D; Çağlayan M
    Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and biochemical characterization of LIG1 during mutagenic nick sealing of oxidatively damaged ends at the final step of DNA repair.
    Balu KE; Almohdar D; Ratcliffe J; Tang Q; Parwal T; Çağlayan M
    bioRxiv; 2024 May; ():. PubMed ID: 38766188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair.
    Tang Q; Gulkis M; McKenna R; Çağlayan M
    Nat Commun; 2022 Jul; 13(1):3860. PubMed ID: 35790757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Human XRCC1 Protein Oxidation on the Functional Activity of Its Complexes with the Key Enzymes of DNA Base Excision Repair.
    Vasil'eva IA; Moor NA; Lavrik OI
    Biochemistry (Mosc); 2020 Mar; 85(3):288-299. PubMed ID: 32564733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications.
    Çağlayan M
    DNA Repair (Amst); 2020 Nov; 95():102945. PubMed ID: 32853828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair.
    Çağlayan M; Wilson SH
    DNA Repair (Amst); 2015 Nov; 35():85-9. PubMed ID: 26466358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair".
    Çağlayan M; Wilson SH
    DNA Repair (Amst); 2015 Dec; 36():86-90. PubMed ID: 26596511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates.
    Çağlayan M
    Nucleic Acids Res; 2020 Apr; 48(7):3708-3721. PubMed ID: 32140717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human DNA ligases I and IIIα as determinants of accuracy and efficiency of base excision DNA repair.
    Moor NA; Vasil'eva IA; Lavrik OI
    Biochimie; 2024 Apr; 219():84-95. PubMed ID: 37573020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination.
    Gulkis M; Tang Q; Petrides M; Çağlayan M
    Res Sq; 2023 Apr; ():. PubMed ID: 37090517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When DNA repair goes wrong: BER-generated DNA-protein crosslinks to oxidative lesions.
    Quiñones JL; Demple B
    DNA Repair (Amst); 2016 Aug; 44():103-109. PubMed ID: 27264558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ADP-ribose) polymerase-1 (PARP-1) is required in murine cell lines for base excision repair of oxidative DNA damage in the absence of DNA polymerase beta.
    Le Page F; Schreiber V; Dherin C; De Murcia G; Boiteux S
    J Biol Chem; 2003 May; 278(20):18471-7. PubMed ID: 12637553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemical and kinetic perspective on base excision repair of DNA.
    Schermerhorn KM; Delaney S
    Acc Chem Res; 2014 Apr; 47(4):1238-46. PubMed ID: 24646203
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Çağlayan M; Wilson SH
    Bio Protoc; 2017 Jun; 7(12):. PubMed ID: 28835905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase β outperforms DNA polymerase γ in key mitochondrial base excision repair activities.
    Baptiste BA; Baringer SL; Kulikowicz T; Sommers JA; Croteau DL; Brosh RM; Bohr VA
    DNA Repair (Amst); 2021 Mar; 99():103050. PubMed ID: 33540226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.