These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38736274)
1. Establishment and validation of multiclassification prediction models for pulmonary nodules based on machine learning. Liu Q; Lv X; Zhou D; Yu N; Hong Y; Zeng Y Clin Respir J; 2024 May; 18(5):e13769. PubMed ID: 38736274 [TBL] [Abstract][Full Text] [Related]
2. [The diagnostic value of machine-learning-based model for predicting the malignancy of solid nodules in multiple pulmonary nodules]. Zhang K; Wei ZH; Wang X; Chen KZ Zhonghua Wai Ke Za Zhi; 2022 Jun; 60(6):573-579. PubMed ID: 35658345 [No Abstract] [Full Text] [Related]
3. A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules. Xing W; Sun H; Yan C; Zhao C; Wang D; Li M; Ma J BMC Cancer; 2021 Mar; 21(1):263. PubMed ID: 33691657 [TBL] [Abstract][Full Text] [Related]
4. Risk of malignancy in pulmonary nodules: A validation study of four prediction models. Al-Ameri A; Malhotra P; Thygesen H; Plant PK; Vaidyanathan S; Karthik S; Scarsbrook A; Callister ME Lung Cancer; 2015 Jul; 89(1):27-30. PubMed ID: 25864782 [TBL] [Abstract][Full Text] [Related]
5. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
6. Risk assessment of malignancy in solitary pulmonary nodules in lung computed tomography: a multivariable predictive model study. Liu HY; Zhao XR; Chi M; Cheng XS; Wang ZQ; Xu ZW; Li YL; Yang R; Wu YJ; Zhang XJ Chin Med J (Engl); 2021 Jun; 134(14):1687-1694. PubMed ID: 34397595 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography. González Maldonado S; Delorme S; Hüsing A; Motsch E; Kauczor HU; Heussel CP; Kaaks R JAMA Netw Open; 2020 Feb; 3(2):e1921221. PubMed ID: 32058555 [TBL] [Abstract][Full Text] [Related]
8. External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data. Winter A; Aberle DR; Hsu W Thorax; 2019 Jun; 74(6):551-563. PubMed ID: 30898897 [TBL] [Abstract][Full Text] [Related]
9. A prediction model to evaluate the pretest risk of malignancy in solitary pulmonary nodules: evidence from a large Chinese southwestern population. Wu Z; Huang T; Zhang S; Cheng D; Li W; Chen B J Cancer Res Clin Oncol; 2021 Jan; 147(1):275-285. PubMed ID: 33025281 [TBL] [Abstract][Full Text] [Related]
10. A decision tree model to distinguish between benign and malignant pulmonary nodules on CT scans. Ma XB; Xu QL; Li N; Wang LN; Li HC; Jiang SJ Eur Rev Med Pharmacol Sci; 2023 Jun; 27(12):5692-5699. PubMed ID: 37401307 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of models for predicting the probability of malignancy in patients with pulmonary nodules. Li Y; Hu H; Wu Z; Yan G; Wu T; Liu S; Chen W; Lu Z Biosci Rep; 2020 Feb; 40(2):. PubMed ID: 32068231 [TBL] [Abstract][Full Text] [Related]
12. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
13. Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study. Wu G; Woodruff HC; Sanduleanu S; Refaee T; Jochems A; Leijenaar R; Gietema H; Shen J; Wang R; Xiong J; Bian J; Wu J; Lambin P Eur Radiol; 2020 May; 30(5):2680-2691. PubMed ID: 32006165 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of Machine Learning-based Model for the Prediction of Malignancy in Multiple Pulmonary Nodules: Analysis from Multicentric Cohorts. Chen K; Nie Y; Park S; Zhang K; Zhang Y; Liu Y; Hui B; Zhou L; Wang X; Qi Q; Li H; Kang G; Huang Y; Chen Y; Liu J; Cui J; Li M; Park IK; Kang CH; Shen H; Yang Y; Guan T; Zhang Y; Yang F; Kim YT; Wang J Clin Cancer Res; 2021 Apr; 27(8):2255-2265. PubMed ID: 33627492 [TBL] [Abstract][Full Text] [Related]
15. Combination of positron emission tomography/computed tomography and chest thin-layer high-resolution computed tomography for evaluation of pulmonary nodules: Correlation with imaging features, maximum standardized uptake value, and pathology. Hou S; Lin X; Wang S; Shen Y; Meng Z; Jia Q; Tan J Medicine (Baltimore); 2018 Aug; 97(31):e11640. PubMed ID: 30075545 [TBL] [Abstract][Full Text] [Related]
16. [Risk factor analysis of the patients with solitary pulmonary nodules and establishment of a prediction model for the probability of malignancy]. Wang X; Xu YH; Du ZY; Qian YJ; Xu ZH; Chen R; Shi MH Zhonghua Zhong Liu Za Zhi; 2018 Feb; 40(2):115-120. PubMed ID: 29502371 [No Abstract] [Full Text] [Related]
17. Diagnosis of Benign and Malignant Pulmonary Ground-Glass Nodules Using Computed Tomography Radiomics Parameters. Liang L; Zhang H; Lei H; Zhou H; Wu Y; Shen J Technol Cancer Res Treat; 2022; 21():15330338221119748. PubMed ID: 36259167 [No Abstract] [Full Text] [Related]
18. Quantitative CT analysis of lung parenchyma to improve malignancy risk estimation in incidental pulmonary nodules. Peters AA; Weinheimer O; von Stackelberg O; Kroschke J; Piskorski L; Debic M; Schlamp K; Welzel L; Pohl M; Christe A; Ebner L; Kauczor HU; Heußel CP; Wielpütz MO Eur Radiol; 2023 Jun; 33(6):3908-3917. PubMed ID: 36538071 [TBL] [Abstract][Full Text] [Related]
19. Combining serum miRNAs, CEA, and CYFRA21-1 with imaging and clinical features to distinguish benign and malignant pulmonary nodules: a pilot study : Xianfeng Li et al.: Combining biomarker, imaging, and clinical features to distinguish pulmonary nodules. Li X; Zhang Q; Jin X; Cao L World J Surg Oncol; 2017 May; 15(1):107. PubMed ID: 28545454 [TBL] [Abstract][Full Text] [Related]
20. Application value of the automated machine learning model based on modified CT index combined with serological indices in the early prediction of lung cancer. Meng L; Zhu P; Xia K Front Public Health; 2024; 12():1368217. PubMed ID: 38645446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]