These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 38736274)
21. Quantitative CT analysis of lung parenchyma to improve malignancy risk estimation in incidental pulmonary nodules. Peters AA; Weinheimer O; von Stackelberg O; Kroschke J; Piskorski L; Debic M; Schlamp K; Welzel L; Pohl M; Christe A; Ebner L; Kauczor HU; Heußel CP; Wielpütz MO Eur Radiol; 2023 Jun; 33(6):3908-3917. PubMed ID: 36538071 [TBL] [Abstract][Full Text] [Related]
22. Combining serum miRNAs, CEA, and CYFRA21-1 with imaging and clinical features to distinguish benign and malignant pulmonary nodules: a pilot study : Xianfeng Li et al.: Combining biomarker, imaging, and clinical features to distinguish pulmonary nodules. Li X; Zhang Q; Jin X; Cao L World J Surg Oncol; 2017 May; 15(1):107. PubMed ID: 28545454 [TBL] [Abstract][Full Text] [Related]
23. Application value of the automated machine learning model based on modified CT index combined with serological indices in the early prediction of lung cancer. Meng L; Zhu P; Xia K Front Public Health; 2024; 12():1368217. PubMed ID: 38645446 [TBL] [Abstract][Full Text] [Related]
25. Enhancing a deep learning model for pulmonary nodule malignancy risk estimation in chest CT with uncertainty estimation. Peeters D; Alves N; Venkadesh KV; Dinnessen R; Saghir Z; Scholten ET; Schaefer-Prokop C; Vliegenthart R; Prokop M; Jacobs C Eur Radiol; 2024 Oct; 34(10):6639-6651. PubMed ID: 38536463 [TBL] [Abstract][Full Text] [Related]
26. Development and external validation of a multimodal integrated feature neural network (MIFNN) for the diagnosis of malignancy in small pulmonary nodules (≤10 mm). Yang R; Zhang Y; Li W; Li Q; Liu X; Zhang F; Liang Z; Huang J; Li X; Tao L; Guo X Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38684143 [No Abstract] [Full Text] [Related]
27. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer. Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337 [TBL] [Abstract][Full Text] [Related]
28. A clinically applicable model more suitable for predicting malignancy or benignity of pulmonary ground glass nodules in women patients. Zhu X; Shen C; Dong J BMC Cancer; 2024 Oct; 24(1):1225. PubMed ID: 39363284 [TBL] [Abstract][Full Text] [Related]
29. A simple prediction model using size measures for discrimination of invasive adenocarcinomas among incidental pulmonary subsolid nodules considered for resection. Kim H; Goo JM; Park CM Eur Radiol; 2019 Apr; 29(4):1674-1683. PubMed ID: 30255253 [TBL] [Abstract][Full Text] [Related]
30. The Probability of Lung Cancer in Patients With Incidentally Detected Pulmonary Nodules: Clinical Characteristics and Accuracy of Prediction Models. Vachani A; Zheng C; Amy Liu IL; Huang BZ; Osuji TA; Gould MK Chest; 2022 Feb; 161(2):562-571. PubMed ID: 34364866 [TBL] [Abstract][Full Text] [Related]
31. A combined non-enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub-centimeter pulmonary solid nodules. Lin RY; Zheng YN; Lv FJ; Fu BJ; Li WJ; Liang ZR; Chu ZG Med Phys; 2023 May; 50(5):2835-2843. PubMed ID: 36810703 [TBL] [Abstract][Full Text] [Related]
32. Estimation of malignancy of pulmonary nodules at CT scans: Effect of computer-aided diagnosis on diagnostic performance of radiologists. Liu J; Zhao L; Han X; Ji H; Liu L; He W Asia Pac J Clin Oncol; 2021 Jun; 17(3):216-221. PubMed ID: 32757455 [TBL] [Abstract][Full Text] [Related]
34. Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT. Venkadesh KV; Setio AAA; Schreuder A; Scholten ET; Chung K; W Wille MM; Saghir Z; van Ginneken B; Prokop M; Jacobs C Radiology; 2021 Aug; 300(2):438-447. PubMed ID: 34003056 [TBL] [Abstract][Full Text] [Related]
35. Characterization of Pulmonary Nodules Based on Features of Margin Sharpness and Texture. Ferreira JR; Oliveira MC; de Azevedo-Marques PM J Digit Imaging; 2018 Aug; 31(4):451-463. PubMed ID: 29047033 [TBL] [Abstract][Full Text] [Related]
36. Novel and convenient method to evaluate the character of solitary pulmonary nodule-comparison of three mathematical prediction models and further stratification of risk factors. Xiao F; Liu D; Guo Y; Shi B; Song Z; Tian Y; Liang C PLoS One; 2013; 8(10):e78271. PubMed ID: 24205175 [TBL] [Abstract][Full Text] [Related]
37. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Gong J; Liu JY; Sun XW; Zheng B; Nie SD Phys Med Biol; 2018 Feb; 63(3):035036. PubMed ID: 29311420 [TBL] [Abstract][Full Text] [Related]
38. [A Growth Prediction Model of Pulmonary Ground-Glass Nodules Based on Clinical Visualization Parameters]. Zhou YY; Chen ZJ Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2024 Apr; 46(2):169-175. PubMed ID: 38686712 [TBL] [Abstract][Full Text] [Related]
39. Development of a Risk Prediction Model to Estimate the Probability of Malignancy in Pulmonary Nodules Being Considered for Biopsy. Reid M; Choi HK; Han X; Wang X; Mukhopadhyay S; Kou L; Ahmad U; Wang X; Mazzone PJ Chest; 2019 Aug; 156(2):367-375. PubMed ID: 30940455 [TBL] [Abstract][Full Text] [Related]
40. Establishment and validation of a clinical model for diagnosing solitary pulmonary nodules. Zhou L; Zhou Z; Liu F; Sun H; Zhou B; Dai L; Zhang G J Surg Oncol; 2022 Dec; 126(7):1316-1329. PubMed ID: 35975732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]