These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38737073)

  • 1. On Improving Water-Based Drilling Mud Swelling Control Using Modified Poly(Vinyl Alcohol)s.
    Poungui D; Sugai Y; Nguele R; Sasaki K
    ACS Omega; 2024 May; 9(18):19732-19740. PubMed ID: 38737073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Magnetic Surfactant Having One Degree of Unsaturation in the Hydrophobic Tail as a Shale Swelling Inhibitor.
    Murtaza M; Gbadamosi A; Ahmad HM; Hussain SMS; Kamal MS; Mahmoud M; Patil S
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker.
    Murtaza M; Ahmad HM; Kamal MS; Hussain SMS; Mahmoud M; Patil S
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32971742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Water-Based Drilling Mud Performance Using Biopolymer Gum: Integrating Experimental and Machine Learning Techniques.
    Murtaza M; Tariq Z; Kamal MS; Rana A; Saleh TA; Mahmoud M; Alarifi SA; Syed NA
    Molecules; 2024 May; 29(11):. PubMed ID: 38893388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray Computed Tomography (CT) to Scan the Structure and Characterize the Mud Cake Incorporated with Various Magnetic NPs Concentration: An Application to Evaluate the Wellbore Stability and Formation Damage.
    Faisal RS; Salih NM; Kamal I; Préat A
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoresponsive Bentonite for Water-Based Drilling Fluids.
    Dong W; Pu X; Ren Y; Zhai Y; Gao F; Xie W
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31262077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Hematite-Based Invert Emulsion Mud Stability at High-Pressure High-Temperature Wells.
    Ahmed A; Basfar S; Elkatatny S; Gajbhiye R
    ACS Omega; 2020 Dec; 5(50):32689-32696. PubMed ID: 33376906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a Novel and Sustainable Silicate Solution as an Alternative to Sodium Silicate for Clay Swelling Inhibition.
    Murtaza M; Kamal MS; Mahmoud M
    ACS Omega; 2020 Jul; 5(28):17405-17415. PubMed ID: 32715225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epsom Salt-Based Natural Deep Eutectic Solvent as a Drilling Fluid Additive: A Game-Changer for Shale Swelling Inhibition.
    Rasool MH; Ahmad M
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a Core-Shell Structure Nano Filtration Control Additive in Salt-Resistant Clay-Free Water-Based Drilling Fluid.
    Wang G; Li W; Qiu S; Liu J; Ou Z; Li X; Ji F; Zhang L; Liu S; Yang L; Jiang G
    Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37960011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Biopolymer Chitosan on the Rheology and Stability of Na-Bentonite Drilling Mud.
    Abu-Jdayil B; Ghannam M; Alsayyed Ahmed K; Djama M
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of High Temperature-Resistant Modified Starch Polyamine Anti-Collapse Water-Based Drilling Fluid System for Deep Shale Reservoir.
    Kong X; Chen M; Zhang C; Liu Z; Jin Y; Wang X; Liu M; Li S
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of molecular flexibility on the rheological and filtration properties of synthetic polymers used as fluid loss additives in water-based drilling fluid.
    Chu Q; Lin L
    RSC Adv; 2019 Mar; 9(15):8608-8619. PubMed ID: 35518707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rice husk ash as a sustainable and economical alternative to chemical additives for enhanced rheology in drilling fluids.
    Raza A; Hussain M; Raza N; Aleem W; Ahmad S; Qamar S
    Environ Sci Pollut Res Int; 2023 Oct; 30(48):105614-105626. PubMed ID: 37715037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nanosilica on the properties of brine-base drilling fluid.
    Xia P; Pan Y
    Sci Rep; 2023 Nov; 13(1):20462. PubMed ID: 37993499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Weighted Barite-Free Formate Drilling Mud for Well Construction under Complicated Conditions.
    Morenov V; Leusheva E; Liu T
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34961008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic Analysis and Cake Erosion Properties of a Modified Water-Based Drilling Fluid by a Polyacrylamide/Silica Nanocomposite during Rotating-Disk Dynamic Filtration.
    Movahedi H; Jamshidi S; Hajipour M
    ACS Omega; 2022 Dec; 7(48):44223-44240. PubMed ID: 36506166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulating a novel drilling mud using bio-polymers, nanoparticles, and SDS and investigating its rheological behavior, interfacial tension, and formation damage.
    Taghdimi R; Kaffashi B; Rasaei MR; Dabiri MS; Hemmati-Sarapardeh A
    Sci Rep; 2023 Jul; 13(1):12080. PubMed ID: 37495735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the locally sourced materials as fluid loss control additives in water-based drilling fluid.
    Okon AN; Akpabio JU; Tugwell KW
    Heliyon; 2020 May; 6(5):e04091. PubMed ID: 32509995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Amphoteric Polymer as a Rheology Enhancer and Fluid-Loss Control Agent for Water-Based Drilling Muds at Elevated Temperatures.
    Hamad BA; He M; Xu M; Liu W; Mpelwa M; Tang S; Jin L; Song J
    ACS Omega; 2020 Apr; 5(15):8483-8495. PubMed ID: 32337409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.