These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38737204)
1. Drug targeting of aminopeptidases: importance of deploying a right metal cofactor. Bhat SY Biophys Rev; 2024 Apr; 16(2):249-256. PubMed ID: 38737204 [TBL] [Abstract][Full Text] [Related]
2. Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli. Mitra S; Job KM; Meng L; Bennett B; Holz RC FEBS J; 2008 Dec; 275(24):6248-59. PubMed ID: 19019076 [TBL] [Abstract][Full Text] [Related]
3. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Aguado ME; Izquierdo M; González-Matos M; Varela AC; Méndez Y; Del Rivero MA; Rivera DG; González-Bacerio J Curr Drug Targets; 2023; 24(5):416-461. PubMed ID: 36825701 [TBL] [Abstract][Full Text] [Related]
4. Specificity for inhibitors of metal-substituted methionine aminopeptidase. Li JY; Chen LL; Cui YM; Luo QL; Li J; Nan FJ; Ye QZ Biochem Biophys Res Commun; 2003 Jul; 307(1):172-9. PubMed ID: 12849997 [TBL] [Abstract][Full Text] [Related]
5. Expression and characterization of Mycobacterium tuberculosis methionine aminopeptidase type 1a. Lu JP; Ye QZ Bioorg Med Chem Lett; 2010 May; 20(9):2776-9. PubMed ID: 20363127 [TBL] [Abstract][Full Text] [Related]
6. Metal promiscuity and metal-dependent substrate preferences of Trypanosoma brucei methionine aminopeptidase 1. Marschner A; Klein CD Biochimie; 2015 Aug; 115():35-43. PubMed ID: 25921435 [TBL] [Abstract][Full Text] [Related]
7. Expression and biochemical characterization of a type I methionine aminopeptidase of Plasmodium vivax. Kang JM; Ju JW; Kim JY; Ju HL; Lee J; Lee KH; Lee WJ; Sohn WM; Kim TS; Na BK Protein Expr Purif; 2015 Apr; 108():48-53. PubMed ID: 25595410 [TBL] [Abstract][Full Text] [Related]
8. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus. Mitra S; Sheppard G; Wang J; Bennett B; Holz RC J Biol Inorg Chem; 2009 May; 14(4):573-85. PubMed ID: 19198897 [TBL] [Abstract][Full Text] [Related]
9. Identification and biochemical characterisation of a novel methionine aminopeptidase from the taiga tick Ixodes persulcatus. Yang M; Ma Y; Song M; Wu H; Jiang Q; Liu J; Qu L Ticks Tick Borne Dis; 2021 Jan; 12(1):101554. PubMed ID: 33002807 [TBL] [Abstract][Full Text] [Related]
10. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. Lu JP; Chai SC; Ye QZ J Med Chem; 2010 Feb; 53(3):1329-37. PubMed ID: 20038112 [TBL] [Abstract][Full Text] [Related]
11. Chemical target validation studies of aminopeptidase in malaria parasites using alpha-aminoalkylphosphonate and phosphonopeptide inhibitors. Cunningham E; Drag M; Kafarski P; Bell A Antimicrob Agents Chemother; 2008 Sep; 52(9):3221-8. PubMed ID: 18458130 [TBL] [Abstract][Full Text] [Related]
12. Methionine aminopeptidases with short sequence inserts within the catalytic domain are differentially inhibited: Structural and biochemical studies of three proteins from Vibrio spp. Pillalamarri V; Reddy CG; Bala SC; Jangam A; Kutty VV; Addlagatta A Eur J Med Chem; 2021 Jan; 209():112883. PubMed ID: 33035924 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Lowther WT; Orville AM; Madden DT; Lim S; Rich DH; Matthews BW Biochemistry; 1999 Jun; 38(24):7678-88. PubMed ID: 10387007 [TBL] [Abstract][Full Text] [Related]
14. Advances in Bacterial Methionine Aminopeptidase Inhibition. Helgren TR; Wangtrakuldee P; Staker BL; Hagen TJ Curr Top Med Chem; 2016; 16(4):397-414. PubMed ID: 26268344 [TBL] [Abstract][Full Text] [Related]
15. Structure and function of the methionine aminopeptidases. Lowther WT; Matthews BW Biochim Biophys Acta; 2000 Mar; 1477(1-2):157-67. PubMed ID: 10708856 [TBL] [Abstract][Full Text] [Related]
16. Identification of an SH3-binding motif in a new class of methionine aminopeptidases from Mycobacterium tuberculosis suggests a mode of interaction with the ribosome. Addlagatta A; Quillin ML; Omotoso O; Liu JO; Matthews BW Biochemistry; 2005 May; 44(19):7166-74. PubMed ID: 15882055 [TBL] [Abstract][Full Text] [Related]
17. Structure of the angiogenesis inhibitor ovalicin bound to its noncognate target, human Type 1 methionine aminopeptidase. Addlagatta A; Matthews BW Protein Sci; 2006 Aug; 15(8):1842-8. PubMed ID: 16823043 [TBL] [Abstract][Full Text] [Related]
18. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Xiao Q; Zhang F; Nacev BA; Liu JO; Pei D Biochemistry; 2010 Jul; 49(26):5588-99. PubMed ID: 20521764 [TBL] [Abstract][Full Text] [Related]
19. Subtype-selectivity of metal-dependent methionine aminopeptidase inhibitors. Altmeyer MA; Marschner A; Schiffmann R; Klein CD Bioorg Med Chem Lett; 2010 Jul; 20(14):4038-44. PubMed ID: 20621724 [TBL] [Abstract][Full Text] [Related]
20. Development of quinoline-based hybrid as inhibitor of methionine aminopeptidase 1 from Leishmania donovani. Bhat SY; Bhandari S; Thacker PS; Arifuddin M; Qureshi IA Chem Biol Drug Des; 2021 Feb; 97(2):315-324. PubMed ID: 32816410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]