BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 38737270)

  • 1. The Crosstalk Between Immune Cells After Intracerebral Hemorrhage.
    Zhang BW; Sun KH; Liu T; Zou W
    Neuroscience; 2024 Jan; 537():93-104. PubMed ID: 38056621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of sugar-binding activity of Galectins-8 by thiogalactoside (TDG) attenuates secondary brain damage and improves long-term prognosis following intracerebral hemorrhage.
    Song J; Bai H; Chen S; Xing Y; Lou J
    Heliyon; 2024 May; 10(9):e30422. PubMed ID: 38737270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galectin-3 promotes brain injury by modulating the phenotype of microglia via binding TLR-4 after intracerebral hemorrhage.
    Liang T; Zhu Z; Gong F; Yang X; Lei X; Lu L
    Aging (Albany NY); 2023 Sep; 15(17):9041-9058. PubMed ID: 37698533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-7 attenuates secondary brain injury following experimental intracerebral hemorrhage via inhibition of NLRP3.
    Luo B; Li L; Song XD; Chen HX; Yun DB; Wang L; Zhang Y
    J Stroke Cerebrovasc Dis; 2024 May; 33(5):107670. PubMed ID: 38438086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-nape-acupuncture regulates the differentiation of microglia through PD-1/PD-L1 reducing secondary brain injury in acute phase intracerebral hemorrhage rats.
    Liu Y; Zheng S; Zhang X; Guo W; Du R; Yuan H; Zhang L; Cui H
    Brain Behav; 2023 Nov; 13(11):e3229. PubMed ID: 37614117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment with TO901317, a synthetic liver X receptor agonist, reduces brain damage and attenuates neuroinflammation in experimental intracerebral hemorrhage.
    Wu CH; Chen CC; Lai CY; Hung TH; Lin CC; Chao M; Chen SF
    J Neuroinflammation; 2016 Mar; 13(1):62. PubMed ID: 26968836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage.
    Wu CH; Shyue SK; Hung TH; Wen S; Lin CC; Chang CF; Chen SF
    J Neuroinflammation; 2017 Nov; 14(1):230. PubMed ID: 29178914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diet-Induced High Serum Levels of Trimethylamine-N-oxide Enhance the Cellular Inflammatory Response without Exacerbating Acute Intracerebral Hemorrhage Injury in Mice.
    Li C; Zhu L; Dai Y; Zhang Z; Huang L; Wang TJ; Fu P; Li Y; Wang J; Jiang C
    Oxid Med Cell Longev; 2022; 2022():1599747. PubMed ID: 35242275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microglia: A Double-Edged Sword in Intracerebral Hemorrhage From Basic Mechanisms to Clinical Research.
    Liu J; Liu L; Wang X; Jiang R; Bai Q; Wang G
    Front Immunol; 2021; 12():675660. PubMed ID: 34025674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Therapeutic Approaches for Spontaneous Intracerebral Hemorrhage.
    Al-Kawaz MN; Hanley DF; Ziai W
    Neurotherapeutics; 2020 Oct; 17(4):1757-1767. PubMed ID: 32720246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galectins in the brain: advances in neuroinflammation, neuroprotection and therapeutic opportunities.
    Barake F; Soza A; González A
    Curr Opin Neurol; 2020 Jun; 33(3):381-390. PubMed ID: 32304438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galectin-8 in the onset of the immune response and inflammation.
    Tribulatti MV; Carabelli J; Prato CA; Campetella O
    Glycobiology; 2020 Feb; 30(3):134-142. PubMed ID: 31529033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid neuroinflammatory changes in human acute intracerebral hemorrhage.
    Shtaya A; Bridges LR; Esiri MM; Lam-Wong J; Nicoll JAR; Boche D; Hainsworth AH
    Ann Clin Transl Neurol; 2019 Aug; 6(8):1465-1479. PubMed ID: 31402627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early toll-like receptor 4 blockade reduces ROS and inflammation triggered by microglial pro-inflammatory phenotype in rodent and human brain ischaemia models.
    Parada E; Casas AI; Palomino-Antolin A; Gómez-Rangel V; Rubio-Navarro A; Farré-Alins V; Narros-Fernandez P; Guerrero-Hue M; Moreno JA; Rosa JM; Roda JM; Hernández-García BJ; Egea J
    Br J Pharmacol; 2019 Aug; 176(15):2764-2779. PubMed ID: 31074003
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.