These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38737497)

  • 21. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems.
    Tian FB; Dai H; Luo H; Doyle JF; Rousseau B
    J Comput Phys; 2014 Feb; 258():. PubMed ID: 24415796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image-based immersed boundary model of the aortic root.
    Hasan A; Kolahdouz EM; Enquobahrie A; Caranasos TG; Vavalle JP; Griffith BE
    Med Eng Phys; 2017 Sep; 47():72-84. PubMed ID: 28778565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of intracranial hemodynamics by an efficient and accurate immersed boundary scheme.
    Lampropoulos DS; Bourantas GC; Zwick BF; Kagadis GC; Wittek A; Miller K; Loukopoulos VC
    Int J Numer Method Biomed Eng; 2021 Dec; 37(12):e3524. PubMed ID: 34448366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
    Mittal R; Dong H; Bozkurttas M; Najjar FM; Vargas A; von Loebbecke A
    J Comput Phys; 2008; 227(10):4825-4852. PubMed ID: 20216919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
    Vadala-Roth B; Acharya S; Patankar NA; Rossi S; Griffith BE
    Comput Methods Appl Mech Eng; 2020 Jun; 365():. PubMed ID: 32483394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small-amplitude swimmers can self-propel faster in viscoelastic fluids.
    Riley EE; Lauga E
    J Theor Biol; 2015 Oct; 382():345-55. PubMed ID: 26163369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics.
    Dumbser M; Balsara DS; Tavelli M; Fambri F
    Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leukocyte deformability: finite element modeling of large viscoelastic deformation.
    Dong C; Skalak R
    J Theor Biol; 1992 Sep; 158(2):173-93. PubMed ID: 1474842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel interpolation-free sharp-interface immersed boundary method.
    Kingora K; Sadat-Hosseini H
    J Comput Phys; 2022 Mar; 453():. PubMed ID: 35250049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Hierarchical Grid Solver for Simulation of Flows of Complex Fluids.
    Castelo A; Afonso AM; De Souza Bezerra W
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A General Deep Learning Method for Computing Molecular Parameters of a Viscoelastic Constitutive Model by Solving an Inverse Problem.
    Ye M; Fan YQ; Yuan XF
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling ternary fluids in contact with elastic membranes.
    Pepona M; Shek ACM; Semprebon C; Krüger T; Kusumaatmaja H
    Phys Rev E; 2021 Feb; 103(2-1):022112. PubMed ID: 33735964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments.
    Tian FB; Luo H; Zhu L; Liao JC; Lu XY
    J Comput Phys; 2011 Aug; 230(19):7266-7283. PubMed ID: 23564971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Variational Multiscale method with immersed boundary conditions for incompressible flows.
    Kang S; Masud A
    Meccanica; 2021 Jun; 56(6):1397-1422. PubMed ID: 37655308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.