These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 38737720)
1. Elucidating the Influence of Lipid Composition on Bilayer Perturbations Induced by the N-terminal Region of the Huntingtin Protein. Gamage YI; Pan J Biophysica; 2023 Dec; 3(4):582-597. PubMed ID: 38737720 [TBL] [Abstract][Full Text] [Related]
2. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy. Aryal CM; Pan J Eur Biophys J; 2024 Feb; 53(1-2):57-67. PubMed ID: 38172352 [TBL] [Abstract][Full Text] [Related]
3. Nanoscale Perturbations of Lipid Bilayers Induced by Magainin 2: Insights from AFM Imaging and Force Spectroscopy. Gamage YI; Pan J Chem Phys Lipids; 2024 Sep; 263():105421. PubMed ID: 39067642 [TBL] [Abstract][Full Text] [Related]
4. Herp Promotes Degradation of Mutant Huntingtin: Involvement of the Proteasome and Molecular Chaperones. Luo H; Cao L; Liang X; Du A; Peng T; Li H Mol Neurobiol; 2018 Oct; 55(10):7652-7668. PubMed ID: 29430620 [TBL] [Abstract][Full Text] [Related]
5. Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix. Pan J; Dalzini A; Song L Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):201-209. PubMed ID: 30071193 [TBL] [Abstract][Full Text] [Related]
6. The impact of transmembrane peptides on lipid bilayer structure and mechanics: A study of the transmembrane domain of the influenza A virus M2 protein. Gamage YI; Wadumesthri Y; Gutiérrez HR; Voronine DV; Pan J Biochim Biophys Acta Biomembr; 2024 Oct; 1866(7):184373. PubMed ID: 39047857 [TBL] [Abstract][Full Text] [Related]
7. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy. Choi EJ; Dimitriadis EK Biophys J; 2004 Nov; 87(5):3234-41. PubMed ID: 15347587 [TBL] [Abstract][Full Text] [Related]
8. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers. Swana KW; Nagarajan R; Camesano TA Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576869 [TBL] [Abstract][Full Text] [Related]
9. Lipid Extraction by α-Synuclein Generates Semi-Transmembrane Defects and Lipoprotein Nanoparticles. Pan J; Dalzini A; Khadka NK; Aryal CM; Song L ACS Omega; 2018 Aug; 3(8):9586-9597. PubMed ID: 30198000 [TBL] [Abstract][Full Text] [Related]
10. Non-raft submicron domain formation in cholesterol-containing lipid bilayers induced by polyunsaturated phosphatidylethanolamine. Goh MWS; Tero R Colloids Surf B Biointerfaces; 2022 Feb; 210():112235. PubMed ID: 34891064 [TBL] [Abstract][Full Text] [Related]
18. Membrane domain modulation of Aβ Azouz M; Cullin C; Lecomte S; Lafleur M Nanoscale; 2019 Nov; 11(43):20857-20867. PubMed ID: 31657431 [TBL] [Abstract][Full Text] [Related]
19. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biophys J; 2004 Oct; 87(4):2470-82. PubMed ID: 15454444 [TBL] [Abstract][Full Text] [Related]
20. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability. Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]