These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 38738402)
1. Dual stimuli-responsive upconversion nanoparticle-poly- Gao Q; Wang X; Hu S; He PP; Gou S; Liu S; Du X; Guo W Soft Matter; 2024 May; 20(20):4052-4056. PubMed ID: 38738402 [TBL] [Abstract][Full Text] [Related]
2. Stimuli-responsive microgels for controlled deposition of gold nanoparticles on surfaces. Wei M; Xu W; Gao F; Li X; Carvalho WSP; Zhang X; Serpe MJ Nanoscale Adv; 2020 Nov; 2(11):5242-5253. PubMed ID: 36132044 [TBL] [Abstract][Full Text] [Related]
3. Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption. Kleinen J; Klee A; Richtering W Langmuir; 2010 Jul; 26(13):11258-65. PubMed ID: 20377221 [TBL] [Abstract][Full Text] [Related]
4. A Novel Temperature-Dependent Hydrogel Emulsion with Sol/Gel Reversible Phase Transition Behavior Based on Polystyrene-co-poly(N-isopropylacrylamide)/Poly(N-isopropylacrylamide) Core-Shell Nanoparticle. Jiang Y; Yan R; Pang B; Mi J; Zhang Y; Liu H; Xin J; Zhang Y; Li N; Zhao Y; Lin Q Macromol Rapid Commun; 2021 Jan; 42(2):e2000507. PubMed ID: 33210416 [TBL] [Abstract][Full Text] [Related]
5. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. Tzounis L; Doña M; Lopez-Romero JM; Fery A; Contreras-Caceres R ACS Appl Mater Interfaces; 2019 Aug; 11(32):29360-29372. PubMed ID: 31329406 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional Core-Shell Microgels as Pd-Nanoparticle Containing Nanoreactors With Enhanced Catalytic Turnover. Sabadasch V; Dirksen M; Fandrich P; Hellweg T Front Chem; 2022; 10():889521. PubMed ID: 35692683 [TBL] [Abstract][Full Text] [Related]
7. Temperature and pH-responsive PNIPAM@PAA Nanospheres with a Core-Shell Structure for Controlled Release of Doxorubicin in Breast Cancer Treatment. Ghalehkhondabi V; Fazlali A; Soleymani M J Pharm Sci; 2023 Jul; 112(7):1957-1966. PubMed ID: 37076101 [TBL] [Abstract][Full Text] [Related]
8. Liquid Metal Nanocores Initiated Construction of Smart DNA-Polymer Microgels with Programmable and Regulable Functions and Near-Infrared Light-Driven Locomotion. Zhang Y; Wang C; Yin M; Liang H; Gao Q; Hu S; Guo W Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202311678. PubMed ID: 37963813 [TBL] [Abstract][Full Text] [Related]
9. Thermally induced phase transition of glucose-sensitive core-shell microgels. Luo Q; Liu P; Guan Y; Zhang Y ACS Appl Mater Interfaces; 2010 Mar; 2(3):760-7. PubMed ID: 20356278 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Shen S; Ding B; Zhang S; Qi X; Wang K; Tian J; Yan Y; Ge Y; Wu L Nanomedicine; 2017 Jul; 13(5):1607-1616. PubMed ID: 28285157 [TBL] [Abstract][Full Text] [Related]
11. Double-walled hollow polymeric microspheres with independent pH and temperature dual-responsive and magnetic-targeting function from onion-shaped core-shell structures. Du P; Wang T; Liu P Colloids Surf B Biointerfaces; 2013 Feb; 102():1-8. PubMed ID: 22995074 [TBL] [Abstract][Full Text] [Related]
12. Construction of Core-Shell NanoMOFs@microgel for Aqueous Lubrication and Thermal-Responsive Drug Release. Wu W; Liu J; Gong P; Li Z; Ke C; Qian Y; Luo H; Xiao L; Zhou F; Liu W Small; 2022 Jul; 18(28):e2202510. PubMed ID: 35710878 [TBL] [Abstract][Full Text] [Related]
14. A Near-Infrared and Temperature-Responsive Pesticide Release Platform through Core-Shell Polydopamine@PNIPAm Nanocomposites. Xu X; Bai B; Wang H; Suo Y ACS Appl Mater Interfaces; 2017 Feb; 9(7):6424-6432. PubMed ID: 28124891 [TBL] [Abstract][Full Text] [Related]
16. Schizophrenic core-shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions. Yin J; Hu J; Zhang G; Liu S Langmuir; 2014 Mar; 30(9):2551-8. PubMed ID: 24555801 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic Self-Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core-Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis. Liu G; Wang D; Zhou F; Liu W Small; 2015 Jun; 11(23):2807-16. PubMed ID: 25649419 [TBL] [Abstract][Full Text] [Related]
18. Cooling-Triggered Release from Mesoporous Poly( Vikulina AS; Feoktistova NA; Balabushevich NG; von Klitzing R; Volodkin D ACS Appl Mater Interfaces; 2020 Dec; 12(51):57401-57409. PubMed ID: 33290041 [TBL] [Abstract][Full Text] [Related]
19. Photothermally Triggered Nanoreactors with a Tunable Catalyst Location and Catalytic Activity. Xu X; Sarhan RM; Mei S; Kochovski Z; Koopman W; Priestley RD; Lu Y ACS Appl Mater Interfaces; 2023 Oct; 15(41):48623-48631. PubMed ID: 37807243 [TBL] [Abstract][Full Text] [Related]
20. Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs. Town AR; Giardiello M; Gurjar R; Siccardi M; Briggs ME; Akhtar R; McDonald TO Nanoscale; 2017 May; 9(19):6302-6314. PubMed ID: 28368063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]