BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 38738472)

  • 1. Multifactoral immune modulation potentiates durable remission in multiple models of aggressive malignancy.
    Halpert MM; Burns BA; Rosario SR; Withers HG; Trivedi AJ; Hofferek CJ; Gephart BD; Wang H; Vazquez-Perez J; Amanya SB; Hyslop ST; Yang J; Kemnade JO; Sandulache VC; Konduri V; Decker WK
    FASEB J; 2024 May; 38(10):e23644. PubMed ID: 38738472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma.
    Wang-Bishop L; Wehbe M; Shae D; James J; Hacker BC; Garland K; Chistov PP; Rafat M; Balko JM; Wilson JT
    J Immunother Cancer; 2020 Mar; 8(1):. PubMed ID: 32169869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination.
    Wu X; Nelson M; Basu M; Srinivasan P; Lazarski C; Zhang P; Zheng P; Sandler AD
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33757986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunomodulatory monoclonal antibodies combined with peptide vaccination provide potent immunotherapy in an aggressive murine neuroblastoma model.
    Williams EL; Dunn SN; James S; Johnson PW; Cragg MS; Glennie MJ; Gray JC
    Clin Cancer Res; 2013 Jul; 19(13):3545-55. PubMed ID: 23649004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Druggable epigenetic suppression of interferon-induced chemokine expression linked to
    Seier JA; Reinhardt J; Saraf K; Ng SS; Layer JP; Corvino D; Althoff K; Giordano FA; Schramm A; Fischer M; Hölzel M
    J Immunother Cancer; 2021 May; 9(5):. PubMed ID: 34016720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors.
    Yi M; Niu M; Wu Y; Ge H; Jiao D; Zhu S; Zhang J; Yan Y; Zhou P; Chu Q; Wu K
    J Hematol Oncol; 2022 Oct; 15(1):142. PubMed ID: 36209176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma.
    Mao Y; Eissler N; Blanc KL; Johnsen JI; Kogner P; Kiessling R
    Clin Cancer Res; 2016 Aug; 22(15):3849-59. PubMed ID: 26957560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined mitoxantrone and anti-TGFβ treatment with PD-1 blockade enhances antitumor immunity by remodelling the tumor immune landscape in neuroblastoma.
    Lucarini V; Melaiu O; D'Amico S; Pastorino F; Tempora P; Scarsella M; Pezzullo M; De Ninno A; D'Oria V; Cilli M; Emionite L; Infante P; Di Marcotullio L; De Ioris MA; Barillari G; Alaggio R; Businaro L; Ponzoni M; Locatelli F; Fruci D
    J Exp Clin Cancer Res; 2022 Nov; 41(1):326. PubMed ID: 36397148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune characterization of pre-clinical murine models of neuroblastoma.
    Webb ER; Lanati S; Wareham C; Easton A; Dunn SN; Inzhelevskaya T; Sadler FM; James S; Ashton-Key M; Cragg MS; Beers SA; Gray JC
    Sci Rep; 2020 Oct; 10(1):16695. PubMed ID: 33028899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune Escape Mechanisms and Future Prospects for Immunotherapy in Neuroblastoma.
    Vanichapol T; Chutipongtanate S; Anurathapan U; Hongeng S
    Biomed Res Int; 2018; 2018():1812535. PubMed ID: 29682521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms.
    Neviani P; Wise PM; Murtadha M; Liu CW; Wu CH; Jong AY; Seeger RC; Fabbri M
    Cancer Res; 2019 Mar; 79(6):1151-1164. PubMed ID: 30541743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNγ overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape.
    Caforio M; Sorino C; Caruana I; Weber G; Camera A; Cifaldi L; De Angelis B; Del Bufalo F; Vitale A; Goffredo BM; De Vito R; Fruci D; Quintarelli C; Fanciulli M; Locatelli F; Folgiero V
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33737337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy.
    Hanoteau A; Newton JM; Krupar R; Huang C; Liu HC; Gaspero A; Gartrell RD; Saenger YM; Hart TD; Santegoets SJ; Laoui D; Spanos C; Parikh F; Jayaraman P; Zhang B; Van der Burg SH; Van Ginderachter JA; Melief CJM; Sikora AG
    J Immunother Cancer; 2019 Jan; 7(1):10. PubMed ID: 30646957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting macrophage Syk enhances responses to immune checkpoint blockade and radiotherapy in high-risk neuroblastoma.
    Rohila D; Park IH; Pham TV; Jones R; Tapia E; Liu KX; Tamayo P; Yu A; Sharabi AB; Joshi S
    Front Immunol; 2023; 14():1148317. PubMed ID: 37350973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transplantable TH-MYCN transgenic tumor model in C57Bl/6 mice for preclinical immunological studies in neuroblastoma.
    Kroesen M; Nierkens S; Ansems M; Wassink M; Orentas RJ; Boon L; den Brok MH; Hoogerbrugge PM; Adema GJ
    Int J Cancer; 2014 Mar; 134(6):1335-45. PubMed ID: 24038106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-adrenal murine TH-MYCN neuroblastoma tumors grow more aggressive and exhibit a distinct tumor microenvironment relative to their subcutaneous equivalents.
    Kroesen M; Brok IC; Reijnen D; van Hout-Kuijer MA; Zeelenberg IS; Den Brok MH; Hoogerbrugge PM; Adema GJ
    Cancer Immunol Immunother; 2015 May; 64(5):563-72. PubMed ID: 25687736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition.
    Voeller J; Erbe AK; Slowinski J; Rasmussen K; Carlson PM; Hoefges A; VandenHeuvel S; Stuckwisch A; Wang X; Gillies SD; Patel RB; Farrel A; Rokita JL; Maris J; Hank JA; Morris ZS; Rakhmilevich AL; Sondel PM
    J Immunother Cancer; 2019 Dec; 7(1):344. PubMed ID: 31810498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk
    Wei JS; Kuznetsov IB; Zhang S; Song YK; Asgharzadeh S; Sindiri S; Wen X; Patidar R; Najaraj S; Walton A; Auvil JMG; Gerhard DS; Yuksel A; Catchpoole D; Hewitt SM; Sondel PM; Seeger R; Maris JM; Khan J
    Clin Cancer Res; 2018 Nov; 24(22):5673-5684. PubMed ID: 29784674
    [No Abstract]   [Full Text] [Related]  

  • 19. Multi-Omics Profiling Reveals Distinct Microenvironment Characterization and Suggests Immune Escape Mechanisms of Triple-Negative Breast Cancer.
    Xiao Y; Ma D; Zhao S; Suo C; Shi J; Xue MZ; Ruan M; Wang H; Zhao J; Li Q; Wang P; Shi L; Yang WT; Huang W; Hu X; Yu KD; Huang S; Bertucci F; Jiang YZ; Shao ZM;
    Clin Cancer Res; 2019 Aug; 25(16):5002-5014. PubMed ID: 30837276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Immune Agonist Nanoparticle Therapy Stimulates Type I Interferons to Activate Antigen-Presenting Cells and Induce Antigen-Specific Antitumor Immunity.
    Levy ES; Chang R; Zamecnik CR; Dhariwala MO; Fong L; Desai TA
    Mol Pharm; 2021 Mar; 18(3):1014-1025. PubMed ID: 33541072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.