These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38738608)

  • 21. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
    Müller J; Hartke B
    J Chem Theory Comput; 2016 Aug; 12(8):3913-25. PubMed ID: 27415976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of the ReaxFF Methodology for Electrolyte-Water Systems.
    Fedkin MV; Shin YK; Dasgupta N; Yeon J; Zhang W; van Duin D; van Duin ACT; Mori K; Fujiwara A; Machida M; Nakamura H; Okumura M
    J Phys Chem A; 2019 Mar; 123(10):2125-2141. PubMed ID: 30775922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations.
    Konstantinou K; Sushko PV; Duffy DM
    Phys Chem Chem Phys; 2016 Sep; 18(37):26125-26132. PubMed ID: 27711386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ab Initio Study of Hydrolysis Effects in Single and Ion-Exchanged Alkali Aluminosilicate Glasses.
    Baral K; Li A; Ching WY
    J Phys Chem B; 2020 Sep; 124(38):8418-8433. PubMed ID: 32842737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the Onset of Phase Separation in CaO-SiO
    Swansbury LA; Mountjoy G; Chen X; Karpukhina N; Hill R
    J Phys Chem B; 2017 Jun; 121(22):5647-5653. PubMed ID: 28498659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases.
    van Duin AC; Bryantsev VS; Diallo MS; Goddard WA; Rahaman O; Doren DJ; Raymand D; Hermansson K
    J Phys Chem A; 2010 Sep; 114(35):9507-14. PubMed ID: 20707333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of nitridation on the aqueous dissolution of Na2O-K2O-CaO-P2O5 metaphosphate glasses.
    Riguidel Q; Muñoz F
    Acta Biomater; 2011 Jun; 7(6):2631-6. PubMed ID: 21440095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals.
    Huang HS; Ai LQ; van Duin ACT; Chen M; Lü YJ
    J Chem Phys; 2019 Sep; 151(9):094503. PubMed ID: 31492056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasible and pure P
    Marti-Muñoz J; Xuriguera E; Layton JW; Planell JA; Rankin SE; Engel E; Castaño O
    Acta Biomater; 2019 Aug; 94():574-584. PubMed ID: 31141734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene.
    Xiao H; Shi X; Hao F; Liao X; Zhang Y; Chen X
    J Phys Chem A; 2017 Aug; 121(32):6135-6149. PubMed ID: 28723088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate Force Fields for Atomistic Simulations of Oxides, Hydroxides, and Organic Hybrid Materials up to the Micrometer Scale.
    Kanhaiya K; Nathanson M; In 't Veld PJ; Zhu C; Nikiforov I; Tadmor EB; Choi YK; Im W; Mishra RK; Heinz H
    J Chem Theory Comput; 2023 Nov; 19(22):8293-8322. PubMed ID: 37962992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of thermal parameters and crytallisation in a ternary CaO-Na2O-P2O5-based glass system.
    Franks K; Abrahams I; Georgiou G; Knowles JC
    Biomaterials; 2001 Mar; 22(5):497-501. PubMed ID: 11214761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a reactive force field for the Fe-C interaction to investigate the carburization of iron.
    Lu K; Huo CF; Guo WP; Liu XW; Zhou Y; Peng Q; Yang Y; Li YW; Wen XD
    Phys Chem Chem Phys; 2018 Jan; 20(2):775-783. PubMed ID: 29177358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composition Dependence of the Atomic Structures and Properties of Sodium Aluminosilicate Glasses: Molecular Dynamics Simulations with Reactive and Nonreactive Potentials.
    Kalahe J; Ono M; Urata S; Du J
    J Phys Chem B; 2022 Jul; 126(28):5326-5342. PubMed ID: 35822860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion.
    Weismiller MR; van Duin AC; Lee J; Yetter RA
    J Phys Chem A; 2010 May; 114(17):5485-92. PubMed ID: 20384351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of ReaxFF Reactive Force Field for Aqueous Iron-Sulfur Clusters with Applications to Stability and Reactivity in Water.
    Moerman E; Furman D; Wales DJ
    J Chem Inf Model; 2021 Mar; 61(3):1204-1214. PubMed ID: 33617718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and application of a ReaxFF reactive force field for hydrogen combustion.
    Agrawalla S; van Duin AC
    J Phys Chem A; 2011 Feb; 115(6):960-72. PubMed ID: 21261320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structures and Dissolution Behaviors of Quaternary CaO-SrO-P
    Lee S; Nagata F; Kato K; Nakano T; Kasuga T
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A test on reactive force fields for the study of silica dimerization reactions.
    Moqadam M; Riccardi E; Trinh TT; Åstrand PO; van Erp TS
    J Chem Phys; 2015 Nov; 143(18):184113. PubMed ID: 26567652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.
    Trnka T; Tvaroška I; Koča J
    J Chem Theory Comput; 2018 Jan; 14(1):291-302. PubMed ID: 29156140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.