These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38738863)

  • 1. Rapid Fabrication of Large-Grain Opal Films and Photonic Crystal Hydrogel Sensors by a Filter Paper-Enhanced Evaporation Chip.
    Dai P; Su W; Xian Z; Wei X; Tang S; Huang G; Sun C; Han W; Zhu L; You H
    Langmuir; 2024 May; 40(21):10936-10946. PubMed ID: 38738863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of inverse opal photonic gel sensors on flexible substrates by transfer process.
    Yoon S; Park H; Lee W
    Lab Chip; 2021 Aug; 21(15):2997-3003. PubMed ID: 34156050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of large-area, highly ordered, crack-free inverse opal films.
    Hatton B; Mishchenko L; Davis S; Sandhage KH; Aizenberg J
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10354-9. PubMed ID: 20484675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse opal photonic crystal of chalcogenide glass by solution processing.
    Kohoutek T; Orava J; Sawada T; Fudouzi H
    J Colloid Interface Sci; 2011 Jan; 353(2):454-8. PubMed ID: 21035816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabricating high-quality opal films with uniform structure over a large area.
    Fudouzi H
    J Colloid Interface Sci; 2004 Jul; 275(1):277-83. PubMed ID: 15158410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust Fabrication Technique for Hydrogel Films Containing Micropatterned Opal Structures via Micromolding and an Integrated Evaporative Deposition-Photopolymerization Approach.
    Bukenya M; Lee JH; Kalidindi S; DeCortin M; Tice L; Yoo PJ; Yi H
    Langmuir; 2021 Feb; 37(4):1456-1464. PubMed ID: 33464905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical opal grating films prepared by slide coating of colloidal dispersions in binary liquid media.
    Lee W; Kim S; Kim S; Kim JH; Lee H
    J Colloid Interface Sci; 2015 Feb; 440():229-35. PubMed ID: 25460710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved controllability of opal film growth using capillaries for the deposition process.
    Li HL; Dong W; Bongard HJ; Marlow F
    J Phys Chem B; 2005 May; 109(20):9939-45. PubMed ID: 16852201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Crack-Free Photonic Crystal Films on Superhydrophobic Nanopin Surface.
    Xia T; Luo W; Hu F; Qiu W; Zhang Z; Lin Y; Liu XY
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):22037-22041. PubMed ID: 28593758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving Color and Function with Structure: Optical and Catalytic Support Properties of ZrO
    Waterhouse GIN; Chen WT; Chan A; Sun-Waterhouse D
    ACS Omega; 2018 Aug; 3(8):9658-9674. PubMed ID: 31459096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thick Free-Standing Metallic Inverse Opals Enabled by New Insights into the Fracture of Drying Particle Films.
    Jiang Z; Hsain Z; Pikul JH
    Langmuir; 2020 Jul; 36(26):7315-7324. PubMed ID: 32501700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation-Directed Crack-Patterning of Metal-Organic Framework Colloidal Films and Their Application as Photonic Sensors.
    Dalstein O; Gkaniatsou E; Sicard C; Sel O; Perrot H; Serre C; Boissière C; Faustini M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14011-14015. PubMed ID: 28940925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable Inverse Opal Structure Film for a Rewritable and Double-Sided Photonic Crystal Paper.
    Li X; Meng Y; Zhou Z; Song J; Bian F; Guo W; Wang H; Xu Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53235-53241. PubMed ID: 34704728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.
    Schäfer CG; Lederle C; Zentel K; Stühn B; Gallei M
    Macromol Rapid Commun; 2014 Nov; 35(21):1852-60. PubMed ID: 25243892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opal shell structures: direct assembly versus inversion approach.
    Deng TS; Sharifi P; Marlow F
    Chemphyschem; 2013 Sep; 14(13):2893-6. PubMed ID: 23843257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterned Photonic Nitrocellulose for Pseudo-Paper Microfluidics.
    Gao B; Liu H; Gu Z
    Anal Chem; 2016 May; 88(10):5424-9. PubMed ID: 27088587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High surface area polypyrrole scaffolds for tunable drug delivery.
    Sharma M; Waterhouse GI; Loader SW; Garg S; Svirskis D
    Int J Pharm; 2013 Feb; 443(1-2):163-8. PubMed ID: 23318368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocrystalline Precursors for the Co-Assembly of Crack-Free Metal Oxide Inverse Opals.
    Phillips KR; Shirman T; Shirman E; Shneidman AV; Kay TM; Aizenberg J
    Adv Mater; 2018 May; 30(19):e1706329. PubMed ID: 29349818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust and Reliable Fabrication of Gelatin Films Containing Micropatterned Opal Structures via Evaporative Deposition and Thermal Gelation.
    Kalidindi S; Yi H
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57481-57491. PubMed ID: 36512441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Spherical Titania Inverse Opal Structures Using Electro-Hydrodynamic Atomization.
    Lim JM; Jeong S
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31671541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.